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Abstract

Many applications heavily use bitwise operations on large bitvectors as part of their compu-
tation. In existing systems, performing such bulk bitwise operations requires the processor
to transfer a large amount of data on the memory channel, thereby consuming high latency,
memory bandwidth, and energy. In this paper, we describe Ambit, a recently-proposed
mechanism to perform bulk bitwise operations completely inside main memory. Ambit ex-
ploits the internal organization and analog operation of DRAM-based memory to achieve low
cost, high performance, and low energy. Ambit exposes a new bulk bitwise execution model
to the host processor. Evaluations show that Ambit significantly improves the performance
of several applications that use bulk bitwise operations, including databases.

Index Terms: Processing using Memory, DRAM, Bulk Copy, Bulk Initialization, Bulk
Bitwise Operations, Performance, Energy Efficiency

1. Introduction

Many applications trigger bulk bitwise operations, i.e., bitwise operations on large bit vec-
tors [84, [146]. In databases, bitmap indices [28] [113], which heavily use bulk bitwise opera-
tions, are more efficient than B-trees for many queries [28] 5 [149]. In fact, many real-world
databases [114] [10L [5, [IT] support bitmap indices. A recent work, WideTable [9§], designs
an entire database around a technique called BitWeaving [97], which accelerates scans com-
pletely using bulk bitwise operations. Microsoft recently open-sourced a technology called
BitFunnel [47] that accelerates the document filtering portion of web search. BitFunnel
relies on fast bulk bitwise AND operations. Bulk bitwise operations are also prevalent in
DNA sequence alignment [211, 150, 18], [77, 11T, [129] [17], encryption algorithms [143], [51], [106],
graph processing [96], (15, [112], networking [146], and machine learning [38] . Thus, acceler-
ating bulk bitwise operations can significantly boost the performance of various important
applications.

In existing systems, a bulk bitwise operation requires a large amount of data to be trans-
ferred on the memory channel. Such large data transfers result in high latency, bandwidth,
and energy consumption. In fact, our experiments on a multi-core Intel Skylake [I] and an



NVIDIA GeForce GTX 745 [6] show that the available memory bandwidth of these systems
limits the throughput of bulk bitwise operations. Recent works (e.g., [15] [14], [154] [41], [49]
59, B8, 25, [77, 24, 102, 119]) propose processing in the logic layer of 3D-stacked DRAM,
which stacks DRAM layers on top of a logic layer (e.g., Hybrid Memory Cube [63, 8], High
Bandwidth Memory [7, [88]). While the logic layer in 3D-stacked memory has much higher
bandwidth than traditional systems, it still cannot exploit the maximum internal bandwidth

available inside a DRAM chip [88] (Section [7)).

In this paper, we describe Ambit [134], a new mechanism proposed by recent work that
performs bulk bitwise operation completely inside main memory. Ambit is an instance of the
recently-introduced notion called Processing using Memory [136]. In contrast to Processing
in Memory architectures [15], 14} [154) [49] 157, 14T, 58| 43|, 108, 57, 142, 41, 20, 16}, [88), 139, 137,
118, [85], 1T5], 461, 39, 132, 133], 59], 53], 52, 24, 102} 25], 112] 26] that add extra computational
logic closer to main memory, the idea behind Processing using Memory is to exploit the
existing structure and organization of memory devices with minimal changes to provide
additional functionality.

Along these lines, Ambit uses the analog operation principles of DRAM technology to
perform bulk bitwise operations completely inside the memory array. With modest changes
to the DRAM design, Ambit can exploit 1) the maximum internal bandwidth available
inside each DRAM array, and 2) the memory-level parallelism [109] 82 [45] [81], 110} [86]
across multiple DRAM arrays to enable one to two orders of magnitude improvement in
raw throughput and energy consumption of bulk bitwise operations. Ambit exposes a Bulk
Bitwise Ezecution Model to the host processor. We show that real-world applications that
heavily use bulk bitwise operations can use this model to achieve significant improvements
in performance and energy efficiency.

In this paper, we discuss the following main concepts.

e As Ambit builds on top of modern DRAM architecture, we first provide a brief back-
ground on modern DRAM organization and operation that is sufficient to understand
the mechanisms proposed by Ambit (Section .

e We describe the different components of Ambit, their design and implementation, and
execution models to expose Ambit to the host system in detail (Sections [3H5)).

e We describe quantitative evaluations showing that 1) Ambit works reliably even un-
der significant process variation, and 2) improves performance and energy-efficiency
compared to existing systems for real workloads (Sections .

2. Background on DRAM

In this section, we describe the necessary background to understand modern DRAM ar-
chitecture and its implementation. This paper builds on our previous book chapter that
introduces the notion of Processing using Memory [136]. Since that chapter provides a de-
tailed background on DRAM, this section is mostly reproduced from the DRAM background
section from chapter. While we focus our attention primarily on commodity DRAM design



(i.e., the DDRx interface), most DRAM architectures use very similar design approaches
and vary only in higher-level design choices [83]. As a result, Ambit can be extended to
any DRAM architecture. There has been significant recent research in DRAM architectures
and the interested reader can find details about various aspects of DRAM in multiple recent
publications [82, ©92], 0T} 135, B3], 3], 100, [73), 0] 71, 10T, (5], 121} 00, 117, (6l 31, 88, 130,
79, 187, 29, [133], 93, (72, [70, (4, 145, (76, [75, [74], [116].

At the end of this section, we provide a brief overview of RowClone [I33], a prior work
that enables the memory controller to perform row-wide copy and initialization operations
completely inside DRAM. Ambit exploits RowClone to reduce the overhead of some of its
bulk data copy and initialization operations.

2.1. High-level Organization of the Memory System

Figure (1] shows the organization of the memory subsystem in a modern computing system.
At a high level, each processor chip is connected to of one of more off-chip memory channels.
Each memory channel consists of its own set of command, address, and data buses. Depend-
ing on the design of the processor, there can be either an independent memory controller
for each memory channel or a single memory controller for all memory channels. All mem-
ory modules connected to a channel share the buses of the channel. Each memory module
consists of many DRAM devices (or chips). Most of this section is dedicated to describing
the design of a modern DRAM chip. In Section we present more details of the module
organization of commodity DRAM.

]
]

— DRAM Module

Figure 1: High-level organization of the memory subsystem
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2.2. DRAM Chip

A modern DRAM chip consists of a hierarchy of structures: DRAM cells, tiles/MATs,
subarrays, and banks. In this section, we describe the design of a modern DRAM chip
in a bottom-up fashion, starting from a single DRAM cell and its operation.

2.2.1. DRAM Cell and Sense Amplifier

At the lowest level, DRAM technology uses capacitors to store information. Specifically, it
uses the two extreme states of a capacitor, namely, the empty and the fully charged states
to store a single bit of information. For instance, an empty capacitor can denote a logical
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value of 0, and a fully charged capacitor can denote a logical value of 1. Figure [2| shows the
two extreme states of a capacitor.

- ik

empty fully charged
capacitor capacitor
(logical 0) (logical 1)

Figure 2: Two states of a capacitor

Unfortunately, the capacitors used for DRAM chips are small, and will get smaller with
each new generation. As a result, the amount of charge that can be stored in the capacitor,
and hence the difference between the two states is also very small. In addition, the capacitor
can potentially lose its state after it is accessed. Therefore, to extract the state of the
capacitor, DRAM manufacturers use a component called sense amplifier.

Figure [3| shows a sense amplifier. A sense amplifier contains two inverters which are
connected together such that the output of one inverter is connected to the input of the
other and vice versa. The sense amplifier also has an enable signal that determines if the
inverters are active. When enabled, the sense amplifier has two stable states, as shown in
Figure [4 In both these stable states, each inverter takes a logical value and feeds the other
inverter with the negated input.

0 Vbbb
top

enable —

Vbbb 0
bottom a Lo) a 1)
ogical 0 ogical 1
Figure 3: Sense amplifier
Figure 4: Stable states of a sense amplifier

Figure [5| shows the operation of the sense amplifier, starting from a disabled state. In
the initial disabled state, we assume that the voltage level of the top terminal (V,) is higher
than that of the bottom terminal (V,). When the sense amplifier is enabled in this state, it
senses the difference between the two terminals and amplifies the difference until it reaches
one of the stable states (hence the name “sense amplifier”).

2.2.2. DRAM Cell Operation: The ACTIVATE-PRECHARGE cycle

DRAM technology uses a simple mechanism that converts the logical state of a capacitor
into a logical state of the sense amplifier. Data can then be accessed from the sense amplifier
(since it is in a stable state). Figure [f] shows 1) the connection between a DRAM cell and
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Figure 5: Operation of the sense amplifier

the sense amplifier, and 2) the sequence of states involved in capturing the cell state in the
sense amplifier.
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Figure 6: Operation of a DRAM cell and sense amplifier. @ precharged state, @
wordline enable, ® charge sharing, @ sense amplifier enable, ® activated state.

As shown in the figure (state @), the capacitor is connected to an access transistor that
acts as a switch between the capacitor and the sense amplifier. The transistor is controller
by a wire called wordline. The wire that connects the transistor to the top end of the sense
amplifier is called bitline. In the initial state @, the wordline is lowered, the sense amplifier is
disabled and both ends of the sense amplifier are maintained at a voltage level of %VD p. We
assume that the capacitor is initially fully charged (the operation is similar if the capacitor
was initially empty). This state is referred to as the precharged state. An access to the cell



is triggered by a command called ACTIVATE. Upon receiving an ACTIVATE, the corresponding
wordline is first raised (state @). This connects the capacitor to the bitline. In the ensuing
phase called charge sharing (state ©), charge flows from the capacitor to the bitline, raising
the voltage level on the bitline (top end of the sense amplifier) to %VD p + 0. After charge
sharing, the sense amplifier is enabled (state @). The sense amplifier detects the difference
in voltage levels between its two ends and amplifies the deviation, till it reaches the stable
state where the top end is at Vpp (state @). Since the capacitor is still connected to the
bitline, the charge on the capacitor is also fully restored. We shortly describe how the data
can be accessed from the sense amplifier. However, once the access to the cell is complete,
the cell is taken back to the original precharged state using the command called PRECHARGE.
Upon receiving a PRECHARGE, the wordline is first lowered, thereby disconnecting the cell
from the sense amplifier. Then, the two ends of the sense amplifier are driven to %VD p using
a precharge unit (not shown in the figure for brevity).

2.2.3. DRAM MAT /Tile: The Open Bitline Architecture

A major goal of DRAM manufacturers is to maximize the density of the DRAM chips while
adhering to certain latency constraints (described in Section [2.2.6). There are two costly
components in the setup described in the previous section. The first component is the sense
amplifier itself. Each sense amplifier is around two orders of magnitude larger than a single
DRAM cell [122, 92]. Second, the state of the wordline is a function of the address that is
currently being accessed. The logic that is necessary to implement this function (for each
cell) is expensive.

In order to reduce the overall cost of these two components, they are shared by many
DRAM cells. Specifically, each sense amplifier is shared by a column of DRAM cells. In
other words, all the cells in a single column are connected to the same bitline. Similarly,
each wordline is shared by a row of DRAM cells. Together, this organization consists of a
2-D array of DRAM cells connected to a row of sense amplifiers and a column of wordline
drivers. Figure [7| shows this organization with a 4 x 4 2-D array.

To further reduce the overall cost of the sense amplifiers and the wordline driver, modern
DRAM chips use an architecture called the open bitline architecture [31]. This architecture
exploits two observations. First, the sense amplifier is wider than the DRAM cells. This
difference in width results in a white space near each column of cells. Second, the sense
amplifier is symmetric. Therefore, cells can also be connected to the bottom part of the
sense amplifier. Putting together these two observations, we can pack twice as many cells in
the same area using the open bitline architecture, as shown in Figure

As shown in the figure, a 2-D array of DRAM cells is connected to two rows of sense
amplifiers: one on the top and one on the bottom of the array. While all the cells in a given
row share a common wordline, half the cells in each row are connected to the top row of
sense amplifiers and the remaining half of the cells are connected to the bottom row of sense
amplifiers. This tightly packed structure is called a DRAM MAT/Tile [144], 155, 82]. In a
modern DRAM chip, each MAT typically is a 512 x 512 or 1024 x 1024 array. Multiple MATs
are grouped together to form a larger structure called a DRAM bank, which we describe next.
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Figure 7: A 2-D array of DRAM cells

2.2.4. DRAM Bank

In most modern commodity DRAM interfaces [65] 66, 83], a DRAM bank is the smallest
structure visible to the memory controller. All commands related to data access are directed
to a specific bank. Logically, each DRAM bank is a large monolithic structure with a 2-D
array of DRAM cells connected to a single set of sense amplifiers (also referred to as a row
buffer). For example, in a 2Gb DRAM chip with 8 banks, each bank has 2! rows and each
logical row has 8192 DRAM cells. Figure [9] shows this logical view of a bank.

In addition to the MAT, the array of sense amplifiers, and the wordline driver, each bank
also consists of some peripheral structures to decode DRAM commands and addresses, and
manage the inputs/outputs to the DRAM bank. Specifically, each bank has a row decoder
to decode the row address associated with row-level commands (e.g., ACTIVATE). Each data
access command (READ and WRITE) accesses only a part of a DRAM row. Such an individual
part is referred to as a column. With each data access command, the address of the column
to be accessed is provided. This address is decoded by the column selection logic. Depending
on which column is selected, the corresponding piece of data is communicated between the
sense amplifiers and the bank 1/0 logic. The bank I/O logic in turn acts as an interface
between the DRAM bank and the chip-level 1/0 logic.

Although the bank can logically be viewed as a single MAT, building a single MAT of a
very large size is practically not feasible as it would require very long bitlines and wordlines
(leading to very high latencies). Therefore, each bank is physically implemented as a 2-D
array of DRAM MATSs. Figure[10|shows a physical implementation of the DRAM bank with
4 MATs arranged in a 2 x 2 array. As shown in the figure, the output of the global row
decoder is sent to each row of MATs. The bank 1/0 logic, also known as the global sense
amplifiers, are connected to all the MATs through a set of global bitlines. As shown in the
figure, each vertical collection of MATSs has its own column selection logic (CSL) and global
bitlines. In a real DRAM chip, the global bitlines run on top of the MATSs in a separate
metal layer. Data of each column is split equally across a single row of MATs. With this
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Figure 8: A DRAM MAT /Tile: The open bitline architecture
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data organization, each global bitline needs to be connected only to bitlines within one MAT.
While prior work [144] has explored routing mechanisms to connect each global bitline to all
MATS, such a design incurs high complexity and overhead.

Figure[11]shows the zoomed-in version of a DRAM MAT with the surrounding peripheral
logic. Specifically, the figure shows how each column selection logic selects specific sense
amplifiers from a MAT and connects them to the global bitlines. We note that the width
of the global bitlines for each MAT (typically 8/16) is much smaller than that of the width
of the MAT (typically 512/1024). This is because the global bitlines span a much longer
distance across the chip and hence have to be wider to ensure signal integrity.

Each DRAM chip consists of multiple banks, as shown in Figure[12 All the banks share
the chip’s internal command, address, and data buses. As mentioned before, each bank
operates mostly independently (except for operations that involve the shared buses). The
chip I/O logic manages the transfer of data to and from the chip’s internal bus to the memory
channel. The width of the chip output (typically 8 bits) is much smaller than the output
width of each bank (typically 64 bits). Any piece of data accessed from a DRAM bank is
first buffered at the chip I/O and sent out on the memory bus 8 bits at a time. With the
DDR (double data rate) technology, 8 bits are sent out each half cycle. Therefore, it takes
4 cycles to transfer 64 bits of data from a DRAM chip I/0 logic on to the memory channel.

2.2.5. DRAM Commands: Accessing Data from a DRAM Chip

To access a piece of data from a DRAM chip, the memory controller must first identify the
location of the data: the bank ID (B), the row address (R) within the bank, and the column
address (C') within the row. After identifying these pieces of information, accessing the data
involves three steps.
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Figure 9: DRAM Bank: Logical view

The first step is to issue a PRECHARGE to the bank B. This step prepares the bank for a
data access by ensuring that all the sense amplifiers are in the precharged state (Figure @,
state @). No wordline within the bank is raised in this state.

The second step is to activate the row R that contains the data. This step is triggered
by issuing an ACTIVATE to bank B with row address R. Upon receiving this command, the
corresponding bank feeds its global row decoder with the input R. The global row decoder
logic then raises the wordline of the DRAM row corresponding to address R and enables the
sense amplifiers connected to that row. This triggers the DRAM cell operation described in
Section 2.2.2] At the end of the activate operation, the data from the entire row of DRAM
cells is copied to the corresponding array of sense amplifiers.

The third and final step is to access the data from the required column. This is done by
issuing a READ or WRITE command to the bank with the column address C'. Upon receiving
a READ or WRITE command, the corresponding address is fed to the column selection logic.
The column selection logic then raises the column selection lines (Figure corresponding
to address C, thereby connecting those local sense amplifiers to the global sense amplifiers
through the global bitlines. For a read access, the global sense amplifiers sense the data from
the MAT’s local sense amplifiers and transfer that data to the chip’s internal bus. For a
write access, the global sense amplifiers read the data from the chip’s internal bus and force
the MAT’s local sense amplifiers to the appropriate state.

Not all data accesses require all three steps. Specifically, if the row that is to be accessed
is already activated in the corresponding bank, then the first two steps can be skipped and
the data can be directly accessed by issuing a READ or WRITE to the bank. For this reason,
the array of sense amplifiers are also referred to as a row buffer, and such an access that
skips the first two steps is called a row buffer hit. Similarly, if the bank is already in the
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precharged state, then the first step can be skipped. Such an access is referred to as a row
buffer miss. Finally, if a different row is activated within the bank, then all three steps have
to be performed. Such an access is referred to as a row buffer conflict.
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Figure 12: DRAM Chip

2.2.6. DRAM Timing Constraints

Different operations within DRAM consume different amounts of time. Therefore, after
issuing a command, the memory controller must wait for a sufficient amount of time before
it can issue the next command. Such wait times are managed by pre-specified fixed delays,
called the timing constraints. Timing constraints essentially dictate the minimum amount of
time between two commands issued to the same bank/rank/channel. Table [1| describes some
key timing constraints along with their values for the DDR3-1600 interface. The reason as
to why these constraints exist is discussed in prior works [82] 02, [32, [62].

Name Constraint Description Value (ns)

Time taken to complete a row ac-

tRAS ACTIVATE — PRECHARGE .. . . 35
tivation operation in a bank
Ti . i

{RCD  ACTIVATE —» READ/WRITE ¢ between an activate com 15
mand and a column command to
a bank
Ti k 1

tRP ~ PRECHARGE —» ACTIVATE me  taken to complete a 15

precharge operation in a bank

Time taken to ensure that data is

tWR WRITE — PRECHARGE safely written to the DRAM cells 15
after a write operation (called
write recovery)

Table 1: Key DRAM timing constraints, and their values for DDR3-1600 [65]

2.3. DRAM Module

As mentioned before, each READ or WRITE command for a single DRAM chip typically involves
only 64 bits. In order to achieve high memory bandwidth, commodity DRAM modules group
several DRAM chips (typically 4 or 8) together to form a rank of DRAM chips. The idea is
to connect all chips of a single rank to the same command and address buses, while providing
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each chip with an independent data bus. In effect, all the chips within a rank receive the
same command with the same address, making the rank a logically large DRAM chip.

Figure shows the logical organization of a DRAM rank. Many commodity DRAM
ranks consist of 8 chips with each chip accessing 8 bytes of data in response to each READ
or WRITE command. Therefore, in total, each READ or WRITE command accesses 64 bytes of
data, the typical cache line size in many processors.

Chip 0 Chip 1 Chip 2 Chip 3 Chip4 Chip5 Chip 6 Chip 7

! ! ! ! ! : | !

cmd —= . . . .

— addr

data (64 bits)

Figure 13: Organization of a DRAM rank

2.4. RowClone: Bulk Copy and Initialization using DRAM

RowClone [133] is a mechanism to perform bulk copy and initialization operations completely
inside the DRAM. This approach obviates the need to transfer large quantities of data on
the memory channel, thereby significantly improving the efficiency of a bulk copy operation.
As bulk data initialization (and specifically bulk zeroing) can be viewed as a special case of
a bulk copy operation, RowClone can be easily extended to perform such bulk initialization
operations with high efficiency.

RowClone consists of two independent mechanisms that exploit several observations
about DRAM organization and operation. The first mechanism, called the Fast Parallel
Mode (FPM), efficiently copies data between two rows of DRAM cells that share the same
set of sense amplifiers (i.e., two rows within the same subarray). To copy data from a source
row to a destination row within the same subarray, RowClone-FPM first issues an ACTIVATE
to the source row, immediately followed by an ACTIVATE to the destination row. We show
that this sequence of back-to-back row activations inside the same subarray results in a
data copy from the source row to the destination row. Figure shows the operation of
RowClone-FPM on a single cell.

Without any further optimizations, the latency of RowClone-FPM is equivalent to that
of two row activations followed by a precharge, which is an order of magnitude faster than
existing systems [133].

The second mechanism, called the Pipelined Serial Mode (PSM), efficiently copies cache
lines between two banks within a module in a pipelined manner. To copy data from a source
row in one bank to a destination row in a different bank, RowClone-PSM first activates
both the rows. It then uses a newly-proposed command, TRANSFER, to copy a single cache
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Figure 14: RowClone: Fast Parallel Mode (FPM)

1
VoD

line from the source row directly into the destination row, without having to send the data
outside the chip. Figure (15| compares the data path of READ, WRITE, and TRANSFER. Although
not as fast as FPM, PSM has fewer constraints and hence is more generally applicable [133].

dst dst 1T dst 1T
src sTc src
| ChipT/O | | Chip /O | | Chip /O |
READ al — WRITE a2 — ANSFER al,a2 —
data out € data in — no data —

Figure 15: RowClone: Pipelined Serial Mode (PSM)

We refer the reader to [133] for detailed information on RowClone.

3. Ambit: A Bulk Bitwise Execution Engine

In this section, we describe the design and implementation of Ambit, a new mechanism
that converts DRAM into a bulk bitwise execution engine with low cost. As mentioned in
the introduction, bulk bitwise operations are triggered by many important applications—
e.g., bitmap indices [28| 113, [5, 114, 10, 11], databases [97, O8], document filtering [47],
DNA processing [211, 150}, 18, [77, 11T, 129, [I7], encryption algorithms [143] 51], [106], graph
processing [96], and networking [146]. Accelerating bulk bitwise operations can significantly
boost the performance of these applications.
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3.1. Ambit-AND-OR

The first component of our mechanism, Ambit-AND-OR, uses the analog nature of the
charge sharing phase to perform bulk bitwise AND and OR directly inside the DRAM chip.
It specifically exploits two facts about DRAM operation:

1. In a subarray, each sense amplifier is shared by many (typically 512 or 1024) DRAM
cells on the same bitline.

2. The final state of the bitline after sense amplification depends primarily on the voltage
deviation on the bitline after the charge sharing phase.

Based on these facts, we observe that simultaneously activating three cells, rather than a
single cell, results in a bitwise majority function—i.e., at least two cells have to be fully
charged for the final state to be a logical “1”7. We refer to simultaneous activation of three
cells (or rows) as triple-row activation. We now conceptually describe triple-row activation
and how we use it to perform bulk bitwise AND and OR operations.

3.1.1. Triple-Row Activation (TRA)

A triple-row activation (TRA) simultaneously connects a sense amplifier with three DRAM
cells on the same bitline. For ease of conceptual understanding, let us assume that the three
cells have the same capacitance, the transistors and bitlines behave ideally (no resistance),
and the cells start at a fully refreshed state. Then, based on charge sharing principles [69],
the bitline deviation at the end of the charge sharing phase of the TRA is:

k.Ce.Vpp +Cb~%VDD 1

5§ = B V4
3C. + Cy 9 PP
(2k — 3)C.
V, 1
60, 120, PP (1)

where, ¢ is the bitline deviation, C,. is the cell capacitance, C} is the bitline capacitance,
and k is the number of cells in the fully charged state. It is clear that § > 0 if and only if
2k — 3 > 0. In other words, the bitline deviation is positive if k£ = 2,3 and it is negative if
k = 0,1. Therefore, we expect the final state of the bitline to be Vpp if at least two of the
three cells are initially fully charged, and the final state to be 0, if at least two of the three
cells are initially fully empty.

Figure[16|shows an example TRA where two of the three cells are initially in the charged
state @. When the wordlines of all the three cells are raised simultaneously @, charge sharing
results in a positive deviation on the bitline. Therefore, after sense amplification @, the sense
amplifier drives the bitline to Vpp, and as a result, fully charges all the three CGHSEI

If A, B, and C represent the logical values of the three cells, then the final state of the
bitline is AB + BC' + C'A (the bitwise majority function). Importantly, we can rewrite this
expression as C(A + B) + C(AB). In other words, by controlling the value of the cell C, we
can use TRA to execute a bitwise AND or bitwise OR of the cells A and B. Since activation

Modern DRAMs use an open-bitline architecture [0, B1, 100, 69] (Section , where cells are also
connected to bitline. The three cells in our example are connected to the bitline. However, based on the
duality principle of Boolean algebra [138], i.e., not (A and B) = (not A) or (not B), TRA works seamlessly
even if all the three cells are connected to bitline.
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Figure 16: Triple-row activation (TRA)

is a row-level operation in DRAM, TRA operates on an entire row of DRAM cells and sense
amplifiers, thereby enabling a multi-kilobyte-wide bitwise AND/OR, of two rows.

3.1.2. Making TRA Work

There are five potential issues with TRA that we need to resolve for it to be implementable
in a real DRAM design.

1.

When simultaneously activating three cells, the deviation on the bitline may be smaller
than when activating only one cell. This may lengthen sense amplification or worse, the
sense amplifier may detect the wrong value.

. Equation (1| assumes that all cells have the same capacitance, and that the transistors and

bitlines behave ideally. However, due to process variation, these assumptions are not true
in real designs [911, [90), 32]. This can affect the reliability of TRA, and thus the correctness
of its results.

. As shown in Figure (16 (state ©), TRA overwrites the data of all the three cells with the

final result value. In other words, TRA overwrites all source cells, thereby destroying
their original values.

. Equation [1] assumes that the cells involved in a TRA are either fully-charged or fully-

empty. However, DRAM cells leak charge over time [I01]. If the cells involved have
leaked significantly, TRA may not operate as expected.

Simultaneously activating three arbitrary rows inside a DRAM subarray requires the
memory controller and the row decoder to simultaneously communicate and decode three
row addresses. This introduces a large cost on the address bus and the row decoder,
potentially tripling these structures, if implemented naively.

We address the first two issues by performing rigorous circuit simulations of TRA. Our

results confirm that TRA works as expected (Section [6]). In Sections [3.1.3] and [3.1.4] we
propose a simple implementation of Ambit-AND-OR that addresses all of the last three
issues at low cost.
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3.1.3. Implementation of Ambit-AND-OR

To solve issues 3, 4, and 5 described in Section [3.1.2] our implementation of Ambit reserves
a set of designated rows in each subarray that are used to perform TRAs. These designated
rows are chosen statically at design time. To perform a bulk bitwise AND or OR operation
on two arbitrary source rows, our mechanism first copies the data of the source rows into the
designated rows and performs the required TRA on the designated rows. As an example,
to perform a bitwise AND/OR of two rows A and B, and store the result in row R, our
mechanism performs the following steps.

1. Copy data of row A to designated row TO

Copy data of row B to designated row T1

Initialize designated row T2 to 0

Activate designated rows TO, T1, and T2 simultaneously
Copy data of row TO to row R

A el

Let us understand how this implementation addresses the last three issues described in
Section [3.1.2] First, by performing the TRA on the designated rows, and not directly on
the source data, our mechanism avoids overwriting the source data (issue 3). Second, each
copy operation refreshes the cells of the destination row by accessing the row [101]. Also,
each copy operation takes five-six orders of magnitude lower latency (100 ns—1 ps) than the
refresh interval (64 ms). Since these copy operations (Steps 1 and 2 above) are performed
just before the TRA, the rows involved in the TRA are very close to the fully-refreshed
state just before the TRA operation (issue 4). Finally, since the designated rows are chosen
statically at design time, the Ambit controller uses a reserved address to communicate the
TRA of a pre-defined set of three designated rows. To this end, Ambit reserves a set of
row addresses just to trigger TRAs. For instance, in our implementation to perform a TRA
of designated rows TO, T1, and T2 (Step 4, above), the Ambit controller simply issues an
ACTIVATE with the reserved address B12 (see Section [4.1] for a full list of reserved addresses).
The row decoder maps B12 to all the three wordlines of the designated rows TO, T1, and T2.
This mechanism requires no changes to the address bus and significantly reduces the cost
and complexity of the row decoder compared to performing TRA on three arbitrary rows
(issue 5).

3.1.4. Fast Row Copy and Initialization Using RowClone

Our mechanism needs three row copy operations and one row initialization operation. These
operations, if performed naively, can nullify the benefits of Ambit, as a row copy or row
initialization performed using the memory controller incurs high latency [133, 31]. For-
tunately, a recent work, RowClone [133], proposes two techniques to efficiently copy data
between rows directly within DRAM. The first technique, RowClone-FPM (Fast Parallel
Mode), copies data within a subarray by issuing two back-to-back ACTIVATESs to the source
row and the destination row. This operation takes only 80 ns [I33]. The second technique,
RowClone-PSM (Pipelined Serial Mode), copies data between two banks by using the in-
ternal DRAM bus. Although RowClone-PSM is faster and more efficient than copying data
using the memory controller, it is significantly slower than RowClone-FPM.
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Ambit relies on using RowClone-FPM for most of the copy operations. To enable this,
we propose three ideas. First, to allow Ambit to perform the initialization operation using
RowClone-FPM, we reserve two control rows in each subarray, CO and C1. CO is initialized to
all zeros and C1 is initialized to all ones. Depending on the operation to be performed, bitwise
AND or OR, Ambit copies the data from CO or C1 to the appropriate designated row using
RowClone-FPM. Second, we reserve separate designated rows in each subarray. This allows
each subarray to perform bulk bitwise AND/OR operations on the rows that belong to that
subarray by using RowClone-FPM for all the required copy operations. Third, to ensure that
bulk bitwise operations are predominantly performed between rows inside the same subarray,
we rely on 1) an accelerator API that allows applications to specify bitvectors that are likely
to be involved in bitwise operations, and 2) a driver that maps such bitvectors to the same
subarray (described in Section . With these changes, Ambit can use RowClone-FPM for
a significant majority of the bulk copy operations, thereby ensuring high performance for
the bulk bitwise operations.

A recent work, Low-cost Interlinked Subarrays (LISA) [31], proposes a mechanism to
efficiently copy data across subarrays in the same bank. LISA uses a row of isolation tran-
sistors next to the sense amplifier to control data transfer across two subarrays. LISA can
potentially benefit Ambit by improving the performance of bulk copy operations. However,
as we will describe in Section [3.2] Ambit-NOT also adds transistors near the sense amplifier,
posing some challenges in integrating LISA and Ambit. Therefore, we leave the exploration
of using LISA to speed up Ambit as part of future work.

3.2. Ambit-NOT

Ambit-NOT exploits the fact that at the end of the sense amplification process, the voltage
level of the bitline represents the negated logical value of the cell. Our key idea to perform
bulk bitwise NOT in DRAM is to transfer the data on the bitline to a cell that can also
be connected to the bitline. For this purpose, we introduce the dual-contact cell (shown in
Figure [I7). A dual-contact cell (DCC) is a DRAM cell with two transistors (a 2T-1C cell
similar to the one described in [67, 103]). Figure (17 shows a DCC connected to a sense
amplifier. In a DCC, one transistor connects the cell capacitor to the bitline and the other
transistor connects the cell capacitor to the bitline. We refer to the wordline that controls
the capacitor-bitline connection as the d-wordline (or data wordline) and the wordline that
controls the capacitor-bitline connection as the n-wordline (or negation wordline). The
layout of the dual-contact cell is similar to Lu et al.’s migration cell [103].

Figure (18| shows the steps involved in transferring the negated value of a source cell on
to the DCC connected to the same bitline (i.e., sense amplifier) @. Our mechanism first
activates the source cell @. The activation drives the bitline to the data value corresponding
to the source cell, Vpp in this case and the bitline to the negated value, i.e., 0 ©. In this
activated state, our mechanism activates the n-wordline. Doing so enables the transistor
that connects the DCC to the bitline @. Since the bitline is already at a stable voltage level
of 0, it overwrites the value in the DCC capacitor with 0, thereby copying the negated value
of the source cell into the DCC. After this, our mechanism precharges the bank, and then
copies the negated value from the DCC to the destination cell using RowClone.
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Figure 17: A dual-contact cell connected to a sense amplifier

Implementation of Ambit-NOT. Based on Lu et al.’s [I03] layout, the cost of each
row of DCC is the same as two regular DRAM rows. Similar to the designated rows used for
Ambit-AND-OR (Section [3.1.3)), the Ambit controller uses reserved row addresses to control
the d-wordlines and n-wordlines of the DCC rows—e.g., in our implementation, address B5
maps to the n-wordline of the DCC row (Section [£.1)). To perform a bitwise NOT of row A
and store the result in row R, the Ambit controller performs the following steps.

1. Activate row A

2. Activate n-wordline of DCC (address B5)

3. Precharge the bank.

4. Copy data from d-wordline of DCC to row R (RowClone)

4. Ambit: Full Design and Implementation

In this section, we describe our implementation of Ambit by integrating Ambit-AND-OR
and Ambit-NOT. First, both Ambit-AND-OR and Ambit-NOT reserve a set of rows in
each subarray and a set of addresses that map to these rows. We present the full set
of reserved addresses and their mapping in detail (Section . Second, we introduce a
new primitive called AAP (ACTIVATE-ACTIVATE-PRECHARGE) that the Ambit controller uses
to execute various bulk bitwise operations (Section . Third, we describe an optimization
that lowers the latency of the AAP primitive, further improving the performance of Ambit
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initial state after charge sharing activated source row activated n-wordline

Figure 18: Bitwise NOT using a dual-contact cell
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(Section[4.3). Fourth, we describe how we integrate Ambit with the system stack (Section[f]).
Finally, we evaluate the hardware cost of Ambit (Section [5.6).

4.1. Row Address Grouping

Our implementation divides the space of row addresses in each subarray into three distinct
groups (Figure [19): 1) Bitwise group, 2) Control group, and 3) Data group.

D-grou C-grou
regular M) group group
- [ — ,~ (2rows)
row decoder : 1006 rows i1 co,ct
.'
/
) < B-group
B1o /(8 rows)
R <
A TO,T1,T2,T3
small B-group [ Sense AmpliXers ] bCCO, DECO
DCC1,DCC1

row decoder

Figure 19: Row address grouping in a subarray. The figure shows how the B-group
row decoder (Section (4.3)) simultaneously activates rows TO, T1, and T2 with a single
address B12.

The B-group (or the bitwise group) corresponds to the designated rows used to perform
bulk bitwise AND/OR operations (Section and the dual-contact rows used to perform
bulk bitwise NOT operations (Section . Minimally, Ambit requires three designated
rows (to perform triple row activations) and one row of dual-contact cells in each subarray.
However, to reduce the number of copy operations required by certain bitwise operations
(like xor and xnor), we design each subarray with four designated rows, namely TO—T3,
and two rows of dual-contact cells, one on each side of the row of sense amplifiersP| We
refer to the d-wordlines of the two DCC rows as DCCO and DCC1, and the corresponding n-
wordlines as DCCO and DCC1. The B-group contains 16 reserved addresses: BO—B15. Table
lists the mapping between the 16 addresses and the wordlines. The first eight addresses
individually activate each of the 8 wordlines in the group. Addresses B12—B15 activate
three wordlines simultaneously. Ambit uses these addresses to trigger triple-row activations.
Finally, addresses B8—B11 activate two wordlines. Ambit uses these addresses to copy the
result of an operation simultaneously to two rows. This is useful for xor/xnor operations
to simultaneously negate a row of source data and also copy the source row to a designated
row. Note that this is just an example implementation of Ambit and a real implementation
may use more designated rows in the B-group, thereby enabling more complex bulk bitwise
operations with fewer copy operations.

2Each xor/xnor operation involves multiple and, or, and not operations. We use the additional desig-
nated row and the DCC row to store intermediate results computed as part of the xor/xnor operation (see

Figure )
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Addr. Wordline(s) Addr. Wordline(s)

BO TO B8 DCCO, TO

Bl Ti1 B9 DCC1, T1

B2 T2 B10 T2, T3

B3 T3 B11 TO, T3

B4 DCCO B12 TO, T1, T2
B5 DCCO B13 T1, T2, T3
B6 DCC1 B14 DCCO, T1, T2
B7 DCC1 B15 DCC1, TO, T3

Table 2: Mapping of B-group addresses to corresponding activated wordlines

The C-group (or the control group) contains the two pre-initialized rows for controlling the
bitwise AND/OR operations (Section [3.1.4). Specifically, this group contains two addresses:
CO (row with all zeros) and C1 (row with all ones).

The D-group (or the data group) corresponds to the rows that store regular data. This
group contains all the addresses that are neither in the B-group nor in the C-group. Specifi-
cally, if each subarray contains 1024 rows, then the D-group contains 1006 addresses, labeled
DO—D1005. Ambit exposes only the D-group addresses to the software stack. To ensure that
the software stack has a contiguous view of memory, the Ambit controller interleaves the row
addresses such that the D-group addresses across all subarrays are mapped contiguously to
the processor’s physical address space.

With these groups, the Ambit controller can use the existing DRAM interface to com-
municate all variants of ACTIVATE to the Ambit chip without requiring new commands.
Depending on the address group, the Ambit DRAM chip internally processes each ACTIVATE
appropriately. For instance, by just issuing an ACTIVATE to address B12, the Ambit con-
troller triggers a triple-row activation of TO, T1, and T2. We now describe how the Ambit
controller uses this row address mapping to perform bulk bitwise operations.

4.2. Executing Bitwise Ops: The AAP Primitive

Let us consider the operation, Dk = not Di. To perform this bitwise-NOT operation, the
Ambit controller sends the following sequence of commands.
1. ACTIVATE Di; 2. ACTIVATE B5; 3. PRECHARGE;

4. ACTIVATE B4; 5. ACTIVATE Dk; 6. PRECHARGE;

The first three steps are the same as those described in Section[3.2] These three operations
copy the negated value of row Di into the DCCO row (as described in Figure . Step 4
activates DCCO, the d-wordline of the first DCC row, transferring the negated source data
onto the bitlines. Step 5 activates the destination row, copying the data on the bitlines,
i.e., the negated source data, to the destination row. Step 6 prepares the array for the next
access by issuing a PRECHARGE.

The bitwise-NOT operation consists of two steps of ACTIVATE-ACTIVATE-PRECHARGE op-
erations. We refer to this sequence as the AAP primitive. Each AAP takes two addresses as
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input. AAP (addrl, addr2) corresponds to the following sequence of commands:
ACTIVATE addrl; ACTIVATE addr2; PRECHARGE;

Logically, an AAP operation copies the result of the row activation of the first address (addr1)
to the row(s) mapped to the second address (addr2).

Most bulk bitwise operations mainly involve a sequence of AAP operations. In a few cases,
they require a regular ACTIVATE followed by a PRECHARGE, which we refer to as AP. AP takes
one address as input. AP (addr) maps to the following two commands:

ACTIVATE addr; PRECHARGE;

Figure [20] shows the steps taken by the Ambit controller to execute three bulk bitwise oper-
ations: and, nand, and xor.

a) Dk =Di and Dj ¢) Dk = Di xor D
(M & 1D . )
AAP (Di, BO) ;TO = Di (Di & 'Dj) | (!Di & Dj)
AAP (Dj, B1) ;T1 = Dj AAP (Di, B8) ;DCCO = !Di, TO = Di
AAP (CO, B2) ;T2 = 0 AAP (Dj, B9) ;DCC1 = IDj, T1 = Dj
AAP (B12, Dk) ;Dk = TO & T1 AAP (CO, B10) ;T2 = T3 = 0
] ] AP (B14) ;T1 = DCCO & T1
b) Dk = Di nand Dj AP (B15) .TO = DCC1 & TO
AAP (Di, BO) ;TO = Di AAP (C1, B2) ;T2 =1
AAP (Dj, B].) ;T1 = Dj AAP (B12, Dk) ;Dk = TO | T1

AAP (CO, B2) ;T2 =0 .
AAP (B12, BS) :DCCO = !(TO & T1) or/nor/xnor can be implemented

AAP (B4, Dk) ;Dk = DCCO by appropriately modifying the
control rows of and/nand/xor.

Figure 20: Command sequences for different bitwise operations

Let us consider the and operation, Dk = Di and Dj, shown in Figure 20h. The four AAP
operations directly map to the steps described in Section [3.1.3] The first AAP copies the first
source row (Di) into the designated row TO. Similarly, the second AAP copies the second
source row Dj to row T1, and the third AAP copies the control row “0” to row T2 (to perform
a bulk bitwise AND). Finally, the last AAP 1) issues an ACTIVATE to address B12, which
simultaneously activates the rows TO, T1, and T2, resulting in an and operation of the rows
TO and T1, 2) issues an ACTIVATE to Dk, which copies the result of the and operation to the
destination row Dk, and 3) precharges the bank to prepare it for the next access.

While each bulk bitwise operation involves multiple copy operations, this copy overhead
can be reduced by applying standard compilation techniques. For instance, accumulation-like
operations generate intermediate results that are immediately consumed. An optimization
like dead-store elimination may prevent these values from being copied unnecessarily. Our
evaluations (Section [8)) take into account the overhead of the copy operations without such
optimizations.
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4.3. Accelerating AAP with a Split Row Decoder

The latency of executing any bulk bitwise operation using Ambit depends on the latency of
the AAP primitive. The latency of the AAP in turn depends on the latency of ACTIVATE, i.e.,
tras, and the latency of PRECHARGE, i.e., tgp. The naive approach to execute an AAP is to
perform the three operations serially. Using this approach, the latency of AAP is 2tgrag + trp
(80 ns for DDR3-1600 [64]). While even this naive approach offers better throughput and
energy efficiency than existing systems (not shown here), we propose a simple optimization
that significantly reduces the latency of AAP.

Our optimization is based on two observations. First, the second ACTIVATE of an AAP
is issued to an already activated bank. As a result, this ACTIVATE does not require full
sense amplification, which is the dominant portion of tgag [90, OT], 55]. This enables the
opportunity to reduce the latency for the second ACTIVATE of each AAP. Second, when we
examine all the bitwise operations in Figure [20] with the exception of one AAP in nand, we
find that ezactly one of the two ACTIVATEs in each AAP is to a B-group address. This enables
the opportunity to use a separate decoder for B-group addresses, thereby overlapping the
latency of the two row activations in each AAP.

To exploit both of these observations, our mechanism splits the row decoder into two
parts. The first part decodes all C/D-group addresses and the second smaller part decodes
only B-group addresses. Such a split allows the subarray to simultaneously decode a C/D-
group address along with a B-group address. When executing an AAP, the Ambit controller
issues the second ACTIVATE of an AAP after the first activation has sufficiently progressed.
This forces the sense amplifier to overwrite the data of the second row to the result of the first
activation. This mechanism allows the Ambit controller to significantly overlap the latency
of the two ACTIVATEs. This approach is similar to the inter-segment copy operation used
by Tiered-Latency DRAM [02]. Based on SPICE simulations, our estimate of the latency of
executing the back-to-back ACTIVATES is only 4 ns larger than tgag. For DDR3-1600 (8-8-8)
timing parameters [64], this optimization reduces the latency of AAP from 80 ns to 49 ns.

Since only addresses in the B-group are involved in triple-row activations, the complexity
of simultaneously raising three wordlines is restricted to the small B-group decoder. As a
result, the split row decoder also reduces the complexity of the changes Ambit introduces to
the row decoding logic.

5. Integrating Ambit with the System

Ambit can be plugged in as an I/O (e.g., PCle) device and interfaced with the CPU using
a device model similar to other accelerators (e.g., GPU). While this approach is simple, as
described in previous sections, the address and command interface of Ambit is exactly the
same as that of commodity DRAM. This enables the opportunity to directly plug Ambit
onto the system memory bus and control it using the memory controller. This approach
has several benefits. First, applications can directly trigger Ambit operations using CPU
instructions rather than going through a device API, which incurs additional overhead.
Second, since the CPU can directly access Ambit memory, there is no need to copy data
between the CPU memory and the accelerator memory. Third, existing cache coherence
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protocols can be used to keep Ambit memory and the on-chip cache coherent. To plug
Ambit onto the system memory bus, we need additional support from the rest of the system
stack, which we describe in this section.

5.1. ISA Support

To enable applications to communicate occurrences of bulk bitwise operations to the proces-
sor, we introduce new instructions of the form,
bbop dst, srcl, [src2], size

where bbop is the bulk bitwise operation, dst is the destination address, srcl and src2
are the source addresses, and size denotes the length of operation in bytes. Note that size
must be a multiple of DRAM row size. For bitvectors that are not a multiple of DRAM
row size, we assume that the application will appropriately pad them with dummy data, or
perform the residual (sub-row-sized) operations using the CPU.

5.2. Ambit APIl/Driver Support

For Ambit to provide significant performance benefit over existing systems, it is critical to
ensure that most of the required copy operations are performed using RowClone-FPM, i.e.,
the source rows and the destination rows involved in bulk bitwise operations are present in
the same DRAM subarray. To this end, we expect the manufacturer of Ambit to provide
1) an API that enables applications to specify bitvectors that are likely to be involved in
bitwise operations, and 2) a driver that is aware of the internal mapping of DRAM rows to
subarrays and maps the bitvectors involved in bulk bitwise operations to the same DRAM
subarray. Note that for a large bitvector, Ambit does not require the entire bitvector to fit
inside a single subarray. Rather, each bitvector can be interleaved across multiple subarrays
such that the corresponding portions of each bitvector are in the same subarray. Since
each subarray contains over 1000 rows to store application data, an application can map
hundreds of large bitvectors to Ambit, such that the copy operations required by all the
bitwise operations across all these bitvectors can be performed efficiently using RowClone-
FPM.

5.3. Implementing the bbop Instructions

Since all Ambit operations are row-wide, Ambit requires the source and destination rows
to be row-aligned and the size of the operation to be a multiple of the size of a DRAM
row. The microarchitecture implementation of a bbop instruction checks if each instance of
the instruction satisfies this constraint. If so, the CPU sends the operation to the memory
controller, which completes the operation using Ambit. Otherwise, the CPU executes the
operation itself.
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5.4. Maintaining On-chip Cache Coherence

Since both CPU and Ambit can access/modify data in memory, before performing any Ambit
operation, the memory controller must 1) flush any dirty cache lines from the source rows,
and 2) invalidate any cache lines from destination rows. Such a mechanism is already required
by Direct Memory Access (DMA) [34], which is supported by most modern processors, and
also by recently proposed mechanisms [133], 59, 25, 27]. As Ambit operations are always
row-wide, we can use structures like the Dirty-Block Index [I31] to speed up flushing dirty
data. Our mechanism invalidates the cache lines of the destination rows in parallel with the
Ambit operation. Other recently-proposed techniques like LazyPIM [25] and CoNDA [26]
can also be employed with Ambit.

5.5. Error Correction and Data Scrambling

In DRAM modules that support Error Correction Code (ECC), the memory controller must
first read the data and ECC to verify data integrity. Since Ambit reads and modifies data
directly in memory, it does not work with the existing ECC schemes (e.g., SECDED [50]).
To support ECC with Ambit, we need an ECC scheme that is homomorphic [126] over all
bitwise operations, i.e., ECC(A and B) = ECC(A) and ECC(B), and similarly for other
bitwise operations. The only scheme that we are aware of that has this property is triple
modular redundancy (TMR) [105], wherein ECC(A) = AA. The design of lower-overhead
ECC schemes that are homomorphic over all bitwise operations is an open problem. For the
same reason, Ambit does not work with data scrambling mechanisms that pseudo-randomly
modify the data written to DRAM [40]. Note that these challenges are also present in
any mechanism that interprets data directly in memory (e.g., the Automata Processor [37,
140]). We leave the evaluation of Ambit with TMR and exploration of other ECC and data
scrambling schemes to future work.

5.6. Ambit Hardware Cost

As Ambit largely exploits the structure and operation of existing DRAM design, we estimate
its hardware cost in terms of the overhead it imposes on top of today’s DRAM chip and
memory controller.

5.6.1. Ambit Chip Cost

In addition to support for RowClone, Ambit has only two changes on top of the existing
DRAM chip design. First, it requires the row decoding logic to distinguish between the
B-group addresses and the remaining addresses. Within the B-group, it must implement the
mapping described in Table 2. As the B-group contains only 16 addresses, the complexity of
the changes to the row decoding logic is low. The second source of cost is the implementation
of the dual-contact cells (DCCs). In our design, each sense amplifier has only one DCC on
each side, and each DCC has two wordlines associated with it. In terms of area, each DCC
row costs roughly two DRAM rows, based on estimates from Lu et al. [I03]. We estimate
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the overall storage cost of Ambit to be roughly 8 DRAM rows per subarray—for the four
designated rows and the DCC rows (< 1% of DRAM chip area).

5.6.2. Ambit Controller Cost

On top of the existing memory controller, the Ambit controller must statically store 1) infor-
mation about different address groups, 2) the timing of different variants of the ACTIVATE,
and 3) the sequence of commands required to complete different bitwise operations. When
Ambit is plugged onto the system memory bus, the controller can interleave the various
AAP operations in the bitwise operations with other regular memory requests from different
applications. For this purpose, the Ambit controller must also track the status of on-going
bitwise operations. We expect the overhead of these additional pieces of information to be
small compared to the benefits enabled by Ambit.

5.6.3. Ambit Testing Cost

Testing Ambit chips is similar to testing regular DRAM chips. In addition to the regular
DRAM rows, the manufacturer must test if the TRA operations and the DCC rows work
as expected. In each subarray with 1024 rows, these operations concern only 8 DRAM rows
and 16 addresses of the B-group. In addition, all these operations are triggered using the
ACTIVATE command. Therefore, we expect the overhead of testing an Ambit chip on top of
testing a regular DRAM chip to be low.

When a component is found to be faulty during testing, DRAM manufacturers use a
number of techniques to improve the overall yield; The most prominent among them is using
spare rows to replace faulty DRAM rows. Similar to some prior works [133, 02, 0T 82],
Ambit requires faulty rows to be mapped to spare rows within the same subarray. Note
that, since Ambit preserves the existing DRAM command interface, an Ambit chip that fails
during testing can still be shipped as a regular DRAM chip. This significantly reduces any
potential negative impact of Ambit-specific failures on overall DRAM yield.

6. Circuit-level SPICE Simulations

We use SPICE simulations to confirm that Ambit works reliably. Of the two components
of Ambit, our SPICE results show that Ambit-NOT always works as expected and is not
affected by process variation. This is because, Ambit-NOT operation is very similar to
existing DRAM operation (Section. On the other hand, Ambit-AND-OR requires triple-
row activation, which involves charge sharing between three cells on a bitline. As a result,
it can be affected by process variation in various circuit components.

To study the effect of process variation on TRA, our SPICE simulations model variation
in all the components in the subarray (cell capacitance; transistor length, width, resistance;
bitline/wordline capacitance and resistance; voltage levels). We implement the sense ampli-
fier using 55nm DDR3 model parameters [13], and PTM low-power transistor models [9, [156].
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We use cell/transistor parameters from the Rambus power model [I3] (cell capacitance =
22fF; transistor width/height = 55nm/85nm) ]

We first identify the worst case for TRA, wherein every component has process variation
that works toward making TRA fail. Our results show that even in this extremely adversarial
scenario, TRA works reliably for up to £6% variation in each component.

In practice, variations across components are not so highly correlated. Therefore, we use
Monte-Carlo simulations to understand the practical impact of process variation on TRA.
We increase the amount of process variation from £5% to +25% and run 100,000 simulations
for each level of process variation. Table |3| shows the percentage of iterations in which TRA
operates incorrectly for each level of variation.

Variation +0%  +5% £10% +15% +20% £25%
% Failures  0.00% 0.00% 0.29% 6.01% 16.36% 26.19%

Table 3: Effect of process variation on TRA

Two conclusions are in order. First, as expected, up to £5% variation, there are zero
errors in TRA. Second, even with +10% and +15% variation, the percentage of erroneous

TRAs across 100,000 iterations each is just 0.29% and 6.01%. These results show that Ambit
is reliable even in the presence of significant process variation.

The effect of process variation is expected to get worse with smaller technology nodes [6§].
However, as Ambit largely uses the existing DRAM structure and operation, many techniques
used to combat process variation in existing chips can be used for Ambit as well (e.g., spare
rows or columns). In addition, as described in Section [5.6.3) Ambit chips that fail testing
only for TRA can potentially be shipped as regular DRAM chips, thereby alleviating the
impact of TRA failures on overall DRAM yield, and thus cost.

Note that if an application can tolerate errors in computation, as observed by prior
works [107], T04] [153], 142], then Ambit can be used as an approximate in-DRAM computation
substrate even in the presence of significant process variation. Future work can potentially
explore such an approximate Ambit substrate.

7. Analysis of Ambit's Throughput & Energy

We compare the raw throughput of bulk bitwise operations using Ambit to a multi-core Intel
Skylake CPU [I], an NVIDIA GeForce GTX 745 GPU [6], and processing in the logic layer
of an HMC 2.0 [8] device. The Intel CPU has 4 cores with Advanced Vector eXtensions [61],
and two 64-bit DDR3-2133 channels. The GTX 745 contains 3 streaming multi-processors,
each with 128 CUDA cores [99], and one 128-bit DDR3-1800 channel. The HMC 2.0 device
consists of 32 vaults each with 10 GB/s bandwidth. We use two Ambit configurations:
Ambit that integrates our mechanism into a regular DRAM module with 8 banks, and

3In DRAM, temperature affects mainly cell leakage [911, 100, [152} [125] 10T}, 117, 132} 56, [80, [78, 130} 44, [76].
As TRA is performed on cells that are almost fully-refreshed, we do not expect temperature to affect TRA.
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Ambit-3D that extends a 3D-stacked DRAM similar to HMC with support for Ambit. For
each bitwise operation, we run a microbenchmark that performs the operation repeatedly
for many iterations on large input vectors (32 MB), and measure the throughput of the
operation. Figure [21| plots the results of this experiment for the five systems (the y-axis is
in log scale).

[ Skylake B GTX 745 [1HMC 2.0 [ Ambit H Ambit-3D

Throughput (GOps/s)

not and/or nand/nor Xor/xnor mean

Figure 21: Throughput of bulk bitwise operations.

We draw three conclusions. First, the throughput of Skylake, GTX 745, and HMC 2.0 are
limited by the memory bandwidth available to the respective processors. With an order of
magnitude higher available memory bandwidth, HMC 2.0 achieves 18.5X and 13.1X better
throughput for bulk bitwise operations compared to Skylake and GTX 745, respectively.
Second, Ambit, with its ability to exploit the maximum internal DRAM bandwidth and
memory-level parallelism, outperforms all three systems. On average, Ambit (with 8 DRAM
banks) outperforms Skylake by 44.9X, GTX 745 by 32.0X, and HMC 2.0 by 2.4X. Third, 3D-
stacked DRAM architectures like HMC contain a large number of banks (256 banks in 4GB
HMC 2.0). By extending 3D-stacked DRAM with support for Ambit, Ambit-3D improves
the throughput of bulk bitwise operations by 9.7X compared to HMC 2.0.

We estimate energy for DDR3-1333 using the Rambus power model [I3]. Our energy
numbers include only the DRAM and channel energy, and not the energy consumed by the
processor. For Ambit, some activations have to raise multiple wordlines and hence, consume
higher energy. Based on our analysis, the activation energy increases by 22% for each addi-
tional wordline raised. Table [4]shows the energy consumed per kilo-byte for different bitwise
operations. Across all bitwise operations, Ambit reduces energy consumption by 25.1X—
59.5X compared to copying data with the memory controller using the DDR3 interface.

Design  not and/or nand/nor xor/xnor

DRAM & DDR3 93.7 1379 137.9 137.9
Channel Energy Ambit 1.6 3.2 4.0 5.5
(nJ/KB) (1) 595X 439X 351X 25.1X

Table 4: Energy of bitwise operations. (|) indicates energy reduction of Ambit over
the traditional DDR3-based design.
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8. Effect on Real-World Applications

We evaluate the benefits of Ambit on real-world applications using the Gemb full-system sim-
ulator [22]. Table [5|lists the main simulation parameters. Our simulations take into account
the cost of maintaining coherence, and the overhead of RowClone to perform copy opera-
tions. We assume that application data is mapped such that all bitwise operations happen
across rows within a subarray. We quantitatively evaluate three applications: 1) a database
bitmap index [114], 10, 1], 5], 2) BitWeaving [97], a mechanism to accelerate database col-
umn scan operations, and 3) a bitvector-based implementation of the widely-used set data
structure. In Section [8.4] we discuss four other applications that can benefit from Ambit.

x86, 8-wide, out-of-order, 4 Ghz

Processor 64-entry instruction queue

L1 cache 32 KB D-cache, 32 KB I-cache, LRU policy
L2 cache 2 MB, LRU policy, 64 B cache line size
Memory Controller 8 KB row size, FR-FCFS [127, [158] scheduling
Main memory DDRA4-2400, 1-channel, 1-rank, 16 banks

Table 5: Major simulation parameters

8.1. Bitmap Indices

Bitmap indices [28] are an alternative to traditional B-tree indices for databases. Compared
to B-trees, bitmap indices 1) consume less space, and 2) can perform better for many queries
(e.g., joins, scans). Several major databases support bitmap indices (e.g., Oracle [114],
Redis [10], Fastbit [5], rlite [11]). Several real applications (e.g., [12, 2], 13, [36]) use bitmap
indices for fast analytics. As bitmap indices heavily rely on bulk bitwise operations, Ambit
can accelerate bitmap indices, thereby improving overall application performance.

To demonstrate this benefit, we use the following workload from a real application [36].
The application uses bitmap indices to track users’ characteristics (e.g., gender) and activities
(e.g., did the user log in to the website on day 'X’?) for u users. Our workload runs the
following query: “How many unique users were active every week for the past w weeks?
and How many male users were active each of the past w weeks?” Executing this query
requires 6w bulk bitwise or, 2w-1 bulk bitwise and, and w+1 bulk bitcount operations. In
our mechanism, the bitcount operations are performed by the CPU. Figure shows the
end-to-end query execution time of the baseline and Ambit for the above experiment for
various values of u and w.

We draw two conclusions. First, as each query has O(w) bulk bitwise operations and each
bulk bitwise operation takes O(u) time, the query execution time increases with increasing
value uw. Second, Ambit significantly reduces the query execution time compared to the
baseline, by 6X on average.
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Figure 22: Bitmap index performance. The value above each bar indicates the reduc-
tion in execution time due to Ambit.

While we demonstrate the benefits of Ambit using one query, as all bitmap index queries
involve several bulk bitwise operations, we expect Ambit to provide similar performance
benefits for any application using bitmap indices.

8.2. BitWeaving: Fast Scans using Bitwise Operations

Column scan operations are a common part of many database queries. They are typically
performed as part of evaluating a predicate. For a column with integer values, a predicate
is typically of the form, c1 <= val <= c2, for two integer constants c1 and c2. Recent
works [97, [148] observe that existing data representations for storing columnar data are
inefficient for such predicate evaluation especially when the number of bits used to store each
value of the column is less than the processor word size (typically 32 or 64). This is because
1) the values do not align well with word boundaries, and 2) the processor typically does
not have comparison instructions at granularities smaller than the word size. To address
this problem, BitWeaving [97] proposes two column representations, called BitWeaving-H
and BitWeaving-V. As BitWeaving-V is faster than BitWeaving-H, we focus our attention
on BitWeaving-V, and refer to it as just BitWeaving.

BitWeaving stores the values of a column such that the first bit of all the values of the
column are stored contiguously, the second bit of all the values of the column are stored
contiguously, and so on. Using this representation, the predicate c1 <= val <= c2, can be
represented as a series of bitwise operations starting from the most significant bit all the way
to the least significant bit (we refer the reader to the BitWeaving paper [97] for the detailed
algorithm). As these bitwise operations can be performed in parallel across multiple values
of the column, BitWeaving uses the hardware SIMD support to accelerate these operations.
With support for Ambit, these operations can be performed in parallel across a larger set of
values compared to 128/256-bit SIMD available in existing CPUs, thereby enabling higher
performance.

We show this benefit by comparing the performance of BitWeaving using a baseline CPU
with support for 128-bit SIMD to the performance of BitWeaving accelerated by Ambit for
the following commonly-used query on a table T:

‘select count(*) from T where cl <= val <= c2’
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Evaluating the predicate involves a series of bulk bitwise operations and the count (*)
requires a bitcount operation. The execution time of the query depends on 1) the number
of bits (b) used to represent each value val, and 2) the number of rows () in the table T.
Figure 23| shows the speedup of Ambit over the baseline for various values of b and r.

%:2)’ : ROW count (r) _ D 1m . om D 4m . gm |

11 H
10

Speedup o¥lered by Ambit

4 8 12 16 20 24 28
Number of Bits per Column (b)

Figure 23: Speedup offered by Ambit for BitWeaving over our baseline CPU with
SIMD support

We draw three conclusions. First, Ambit improves the performance of the query by
between 1.8X and 11.8X (7.0X on average) compared to the baseline for various values of
b and r. Second, the performance improvement of Ambit increases with increasing number
of bits per column (b), because, as b increases, the fraction of time spent in performing
the bitcount operation reduces. As a result, a larger fraction of the execution time can be
accelerated using Ambit. Third, for b = 4, 8, 12, and 16, we observe large jumps in the
speedup of Ambit as we increase the row count. These large jumps occur at points where the
working set stops fitting in the on-chip cache. By exploiting the high bank-level parallelism
in DRAM, Ambit can outperform the baseline (by up to 4.1X) even when the working set
fits in the cache.

8.3. Bitvectors vs. Red-Black Trees

Many algorithms heavily use the set data structure. Red-black trees [48] (RB-trees) are typ-
ically used to implement a set [4]. However, a set with a limited domain can be implemented
using a bitvector—a set that contains only elements from 1 to IV, can be represented using
an N-bit bitvector (e.g., Bitset [4]). Each bit indicates whether the corresponding element is
present in the set. Bitvectors provide constant-time insert and lookup operations compared
to O(logn) time taken by RB-trees. However, set operations like union, intersection, and
difference have to scan the entire bitvector regardless of the number of elements actually
present in the set. As a result, for these three operations, depending on the number of ele-
ments in the set, bitvectors may outperform or perform worse than RB-trees. With support
for fast bulk bitwise operations, we show that Ambit significantly shifts the trade-off in favor
of bitvectors for these three operations.
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To demonstrate this, we compare the performance of set union, intersection, and differ-
ence using: RB-tree, bitvectors with 128-bit SIMD support (Bitset), and bitvectors with
Ambit. We run a benchmark that performs each operation on m input sets and stores the
result in an output set. We restrict the domain of the elements to be from 1 to N. There-
fore, each set can be represented using an N-bit bitvector. For each of the three operations,
we run multiple experiments varying the number of elements (e) actually present in each
input set. Figure [24] shows the execution time of RB-tree, Bitset, and Ambit normalized to
RB-tree for the three operations for m = 15, and N = 512k.
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Figure 24: Performance of set operations

We draw three conclusions. First, by enabling much higher throughput for bulk bitwise
operations, Ambit outperforms the baseline Bitset on all the experiments. Second, as ex-
pected, when the number of elements in each set is very small (16 out of 512k), RB-Tree
performs better than Bitset and Ambit (with the exception of union). Third, even when each
set contains only 64 or more elements out of 512k, Ambit significantly outperforms RB-Tree,
3X on average. We conclude that Ambit makes the bitvector-based implementation of a set
more attractive than the commonly-used red-black-tree-based implementation.

8.4. Other Applications

We describe five other examples of applications that can significantly benefit from Ambit in
terms of both performance and energy efficiency. We leave the evaluation of these applica-
tions with Ambit to future works.

8.4.1. BitFunnel: Web Search

Web search is an important workload in modern systems. From the time a query is issued
to the time the results are sent back, web search involves several steps. Document filtering
is one of the most time consuming steps. It identifies all documents that contain all the
words in the input query. Microsoft recently open-sourced BitFunnel [47], a technology that

31



improves the efficiency of document filtering. BitFunnel represents both documents and
queries as a bag of words using Bloom filters [23]. It then uses bitwise AND operations on
specific locations of the Bloom filters to efficiently identify documents that contain all the
query words. With Ambit, this operation can be significantly accelerated by simultaneously
performing the filtering for thousands of documents.

8.4.2. Masked Initialization

Masked initializations [120] are very useful in applications like graphics (e.g., for clearing
a specific color in an image). Masked operations can be represented using bitwise AND or
OR operations. For example, the i’ bit of an integer z can be set using z = z|(1 << i).
Similarly, the i bit can be reset using r = 2&(1 << i). These masks can be preloaded into
DRAM rows and can be used to perform masked operations on a large amount of data. This
operation can be easily accelerated using Ambit.

8.4.3. Encryption

Many encryption algorithms heavily use bitwise operations (e.g., XOR) [143, [51) 106]. Am-
bit’s support for fast bulk bitwise operations can i) boost the performance of existing en-
cryption algorithms, and ii) enable new encryption algorithms with high throughput and
efficiency.

8.4.4. DNA Sequence Mapping

In DNA sequence mapping, prior works [94], 128, 147, 1511, 150, 123, 211, (18, 77, 89, 129, 17, [19]
propose algorithms to map sequenced reads to the reference genome. Some works [150), 123,
211, [18], [77, 1111, [17] heavily use bulk bitwise operations. Ambit can significantly improve the
performance of such DNA sequence mapping algorithms [77].

8.4.5. Machine Learning

Recent works have shown that deep neural networks (DNNs) outperform other machine learn-
ing techniques in many problems such as image classification and speech recognition. Given
the high computational requirements of DNNs, there has been a focus on neural networks
with binary values [124], [60]. A recent work also exploits bit-serial computation to execute
DNN inference algorithms using SIMD bitwise operations in the on-chip SRAM cache [38].
In conjunction with such techniques that increase the fraction of bitwise operations in DNNs,
Ambit can significantly improve the performance of DNN algorithms.

9. Future Work

There are several avenues for future work that can build on top of the Ambit proposal. We
briefly describe these avenues in this section.
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9.1. Extending Ambit to Other Operations

We envision two major class of operations that can significantly increase the domain of
applications that can benefit from Ambit.

The first operation is count. Counting the number of non-zero bits can be a very useful
operation in many applications, including the ones evaluated in this paper (Section .
Extending this operation to count the number of non-zero integers (of different widths)
can further expand the scope of this operation.

The second operation is shift. Most arithmetic operations require some kind of bitwise
shift. Shifting is also heavily used in any encryption algorithms [143, [51) T06] and bioin-
formatics algorithms [21), 150, 18], [77, [111], [I7]. Extending Ambit to support bit shifting at
different granularities can allow Ambit to significantly accelerate these applications. While
recent works [95] B5] explore a possible implementation of shifting inside DRAM, several
challenges remain unaddressed (e.g., data mapping, handling column failures in DRAM).

9.2. Evaluation of New Applications with Ambit

In Section we discussed five other applications that can benefit significantly from Ambit.
A concrete evaluation of these applications can 1) further strengthen the case for Ambit, and
2) reveal other potential operations that may require acceleration in DRAM in order to obtain
good end-to-end application speedups (e.g., bitcount).

9.3. Redesigning Applications to Exploit Ambit

In Section we show how the BitWeaving [97] technique can be accelerated using Ambit.
BitWeaving is a technique that redesigns the data layout of tables in a database and uses an
appropriate algorithm to execute large scan queries efficiently. It is the modified data layout
that makes BitWeaving amenable for SIMD/Ambit acceleration. We believe similar careful
redesign techniques can be used for other important workloads such as graph processing,
machine learning, bioinformatics algorithms, etc., that can make them very amenable for
acceleration using Ambit.

9.4. Taking Advantage of Approximate Ambit

Ambit requires a costly ECC mechanism to avoid errors during computation. In addition,
the error rate may increase with increasing process variation. However, if an application can
tolerate errors in computation, as observed by prior works [107, 104, 153, 142], then Ambit
can be used as an approximate in-DRAM computation substrate.

10. Conclusion

In this paper, we focused on bulk bitwise operations, a class of operations heavily used by
some important applications. Existing systems are inefficient at performing such operations
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as they have to transfer a large amount of data on the memory channel, resulting in high
latency, high memory bandwidth consumption, and high energy consumption.

We described Ambit, which employs the notion of Processing using Memory introduced in
arecent work [I36]. Ambit converts DRAM-based main memory into a bulk bitwise operation
execution engine that performs bulk bitwise operations completely inside the memory [134].
Ambit has two component mechanisms. The first mechanism exploits the fact that many
DRAM cells share the same sense amplifier and uses the idea of simultaneous activation of
three rows of DRAM cells to perform bitwise MAJORITY /AND/OR operations efficiently.
The second mechanism uses the inverters already present inside DRAM sense amplifiers
to efficiently perform bitwise NOT operations. Since Ambit heavily exploits the internal
organization and operation of DRAM, it incurs very low cost on top of the commodity
DRAM architecture (< 1% chip area overhead).

Our evaluations show that Ambit enables between one to two order of magnitude im-
provement in raw throughput and energy consumption of bulk bitwise operations compared
to existing DDR interfaces. We describe many real-world applications that can take advan-
tage of Ambit. Our evaluations with three such applications show that Ambit can improve
average performance of these applications compared to the baseline by between 3.0X-11.8X.
Given its low cost and large performance improvements, we believe Ambit is a promising
execution substrate that can accelerate applications that heavily use bulk bitwise operations.
We hope future work will uncover even more potential in Ambit like execution.

Acknowledgments

We thank the reviewers of ISCA 2016/2017, MICRO 2016/2017, and HPCA 2017 for their
valuable comments on various drafts of shorter versions of this work. We thank the members
of the SAFARI group and PDL for their feedback. We acknowledge the generous support of
our industrial partners, over the years, especially AliBaba, Google, Huawei, Intel, Microsoft,
Nvidia, Samsung, Seagate, and VMWare. This work was supported in part by NSF, SRC,
and the Intel Science and Technology Center for Cloud Computing. Some components of
this work appeared in IEEE CAL [132], MICRO [134], ADCOM [136], and Seshadri’s Ph.D.
thesis [130].

References

[1] 6th Generation Intel Core Processor Family Datasheet.
http://www.intel.com/content/www/us/en/processors/core/
desktop-6th-gen-core-family-datasheet-vol-1.html,

[2] Belly card engineering. https://tech.bellycard.com/.

[3] bitmapist: Powerful realtime analytics with Redis 2.6’s bitmaps and Python. https:
//github.com/Doist/bitmapist.

34


http://www.intel.com/content/www/us/en/processors/core/desktop-6th-gen-core-family-datasheet-vol-1.html
http://www.intel.com/content/www/us/en/processors/core/desktop-6th-gen-core-family-datasheet-vol-1.html
https://tech.bellycard.com/
https://github.com/Doist/bitmapist
https://github.com/Doist/bitmapist

[19]

[20]

C++ containers libary, std::set. http://en.cppreference.com/w/cpp/container/
set.

FastBit: An Efficient Compressed Bitmap Index Technology. https://sdm.1bl.gov/
fastbit/.

GeForce GTX  745. http://www.geforce.com/hardware/desktop-gpus/
geforce-gtx-745-oem/specifications.

High Bandwidth Memory DRAM. http://www.jedec.org/standards-documents/
docs/jesd235.

Hybrid Memory Cube Specification 2.0. http://www.hybridmemorycube.org/files/
SiteDownloads/HMC-30G-VSR_HMCC_Specification_Rev2.0_Public.pdf.

Predictive Technology Model. http://ptm.asu.edu/.
Redis - bitmaps. http://redis.io/topics/data-types-intro#bitmaps.

rlite: A Self-contained, Serverless, Zero-configuration, Transactional Redis-compatible
Database Engine. https://github.com/seppo0010/rlite.

Spool. http://wuw.getspool.com/.
DRAM Power Model. https://www.rambus.com/energy/, 2010.

Junwhan Ahn, Sungpack Hong, Sungjoo Yoo, Onur Mutlu, and Kiyoung Choi. A
Scalable Processing-in-memory Accelerator for Parallel Graph Processing. In ISCA,
2015.

Junwhan Ahn, Sungjoo Yoo, Onur Mutlu, and Kiyoung Choi. PIM-enabled Instruc-
tions: A Low-overhead, Locality-aware Processing-in-memory Architecture. In ISCA,
2015.

Berkin Akin, Franz Franchetti, and James C. Hoe. Data Reorganization in Memory

Using 3D-stacked DRAM. In ISCA, 2015.

Mohammed Alser, Hasan Hassan, Akash Kumar, Onur Mutlu, and Can Alkan. Shouji:
A Fast and Efficient Pre-alignment Filter for Sequence Alignment. Bioinformatics, 03
2019.

Mohammed Alser, Hasan Hassan, Hongyi Xin, Oguz Ergin, Onur Mutlu, and Can
Alkan. GateKeeper: A New Hardware Architecture for Accelerating Pre-Alignment in
DNA Short Read Mapping. Bioinformatics, 2017.

Mohammed Alser, Onur Mutlu, and Can Alkan. Magnet: understanding and improving
the accuracy of genome pre-alignment filtering. arXiv preprint arXiv:1707.01631, 2017.

Oreoluwa Babarinsa and Stratos Idreos. JAFAR: Near-Data Processing for Databases.
In SIGMOD, 2015.

35


http://en.cppreference.com/w/cpp/container/set
http://en.cppreference.com/w/cpp/container/set
https://sdm.lbl.gov/fastbit/
https://sdm.lbl.gov/fastbit/
http://www.geforce.com/hardware/desktop-gpus/geforce-gtx-745-oem/specifications
http://www.geforce.com/hardware/desktop-gpus/geforce-gtx-745-oem/specifications
http://www.jedec.org/standards-documents/docs/jesd235
http://www.jedec.org/standards-documents/docs/jesd235
http://www.hybridmemorycube.org/files/SiteDownloads/HMC-30G-VSR_HMCC_Specification_Rev2.0_Public.pdf
http://www.hybridmemorycube.org/files/SiteDownloads/HMC-30G-VSR_HMCC_Specification_Rev2.0_Public.pdf
http://redis.io/topics/data-types-intro#bitmaps
https://github.com/seppo0010/rlite
http://www.getspool.com/
https://www.rambus.com/energy/

[21]

[22]

23]

[24]

[25]

[26]

28]

[29]

[30]

[31]

Gary Benson, Yozen Hernandez, and Joshua Loving. A Bit-Parallel, General Integer-
Scoring Sequence Alignment Algorithm. In CPM, 2013.

Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K. Reinhardt, Ali Saidi,
Arkaprava Basu, Joel Hestness, Derek R. Hower, Tushar Krishna, Somayeh Sar-
dashti, Rathijit Sen, Korey Sewell, Muhammad Shoaib, Nilay Vaish, Mark D. Hill,
and David A. Wood. The gemb simulator. SIGARCH Comput. Archit. News, 39,
2011.

Burton H. Bloom. Space/time Trade-offs in Hash Coding with Allowable Errors. ACM
Communications, 13, July 1970.

Amirali Boroumand, Saugata Ghose, Youngsok Kim, Rachata Ausavarungnirun, Eric
Shiu, Rahul Thakur, Daehyun Kim, Aki Kuusela, Allan Knies, Parthasarathy Ran-
ganathan, and Onur Mutlu. Google Workloads for Consumer Devices: Mitigating Data
Movement Bottlenecks. In ASPLOS, 2018.

Amirali Boroumand, Saugata Ghose, Brandon Lucia, Kevin Hsieh, Krishna Malladi,
Hongzhong Zheng, and Onur Mutlu. LazyPIM: An Efficient Cache Coherence Mecha-
nism for Processing-in-Memory. IEEE CAL, 2016.

Amirali Boroumand, Saugata Ghose, Minesh Patel, Rachata Ausavarungnirun, Hasan
Hassan, Brandon Lucia, Kevin Hsieh, Nastaran Hajinazar, Krishna T. Malladi, and
Onur Mutlu. CoNDA: Enabling Efficient Near-Data Accelerator Communication by
Optimizing Data Movement. In ISCA, 2019.

Amirali Boroumand, Saugata Ghose, Minesh Patel, Hasan Hassan, Brandon Lucia,
Nastaran Hajinazar, Kevin Hsieh, Krishna T. Malladi, Hongzhong Zheng, and Onur
Mutlu. LazyPIM: Efficient Support for Cache Coherence in Processing-in-Memory
Architectures. CoRR, abs/1706.03162, 2017.

Chee-Yong Chan and Yannis E. loannidis. Bitmap index design and evaluation. In
SIGMOD, 1998.

Kevin Chang. Understanding Reduced-Voltage Operation in Modern DRAM Chips:
Characterization, Analysis, and Mechanisms. PhD thesis, Carnegie Mellon University,
2017.

Kevin K. Chang, Abhijith Kashyap, Hasan Hassan, Saugata Ghose, Kevin Hsieh,
Donghyuk Lee, Tianshi Li, Gennady Pekhimenko, Samira Khan, and Onur Mutlu.
Understanding Latency Variation in Modern DRAM Chips: Experimental Character-
ization, Analysis, and Optimization. In SIGMETRICS, 2016.

Kevin K Chang, Prashant J Nair, Donghyuk Lee, Saugata Ghose, Moinuddin K
Qureshi, and Onur Mutlu. Low-Cost Inter-Linked Subarrays (LISA): Enabling Fast
Inter-Subarray Data Movement in DRAM. In HPCA, 2016.

36



[32] Kevin K Chang, A Giray Yaglik¢i, Saugata Ghose, Aditya Agrawal, Niladrish Chat-
terjee, Abhijith Kashyap, Donghyuk Lee, Mike O’Connor, Hasan Hassan, and Onur
Mutlu. Understanding Reduced-voltage Operation in Modern DRAM Devices: Exper-
imental Characterization, Analysis, and Mechanisms. SIGMETRICS, 2017.

[33] Kevin Kai-Wei Chang, Donghyuk Lee, Zeshan Chishti, Alaa R Alameldeen, Chris
Wilkerson, Yoongu Kim, and Onur Mutlu. Improving DRAM performance by paral-
lelizing refreshes with accesses. In HPCA, 2014.

[34] J. Corbet, A. Rubini, and G. Kroah-Hartman. Linuz Device Drivers, page 445. O’Reilly
Media, 2005.

[35] Quan Deng, Lei Jiang, Youtao Zhang, Minxuan Zhang, and Jun Yang. DrAcc: A
DRAM Based Accelerator for Accurate CNN Inference. In DAC, 2018.

[36] Demiz Denir, Islam AbdelRahman, Liang He, and Yingsheng Gao.
Audience Insights query engine: In-memory integer store for so-
cial  analytics. https://code.facebook.com/posts/382299771946304/
audience-insights-query-engine-in-memory- integer-store-for-social-analytics-/.

[37] Paul Dlugosch, Dave Brown, Paul Glendenning, Michael Leventhal, and Harold Noyes.
An Efficient and Scalable Semiconductor Architecture for Parallel Automata Process-
ing. IEEE TPDS, 2014.

[38] Charles Eckert, Xiaowei Wang, Jingcheng Wang, Arun Subramaniyan, Ravi Iyer, Den-
nis Sylvester, David Blaauw, and Reetuparna Das. Neural cache: Bit-serial in-cache
acceleration of deep neural networks. In ISCA, 2018.

[39] Duncan Elliott, Michael Stumm, W. Martin Snelgrove, Christian Cojocaru, and Robert
McKenzie. Computational RAM: Implementing Processors in Memory. [EEE Des.
Test, 16, 1999.

[40] C.F. Falconer, C. P. Mozak, and A. J. Normal. Suppressing Power Supply Noise Using
Data Scrambling in Double Data Rate Memory Systems. US Patent 8503678, 2009.

[41] A. Farmahini-Farahani, Jung Ho Ahn, K. Morrow, and Nam Sung Kim. NDA: Near-
DRAM acceleration architecture leveraging commodity DRAM devices and standard
memory modules. In HPCA, 2015.

[42] Mingyu Gao, Grant Ayers, and Christos Kozyrakis. Practical Near-Data Processing
for In-Memory Analytics Frameworks. In PACT, 2015.

[43] Mingyu Gao and Christos Kozyrakis. HRL: Efficient and Flexible Reconfigurable Logic
for Near-Data Processing. In HPCA, 2016.

[44] Saugata Ghose, Abdullah Giray Yaglik¢i, Raghav Gupta, Donghyuk Lee, Kais Ku-
drolli, William X. Liu, Hasan Hassan, Kevin K. Chang, Niladrish Chatterjee, Aditya
Agrawal, Mike O’Connor, and Onur Mutlu. What Your DRAM Power Models Are Not
Telling You: Lessons from a Detailed Experimental Study. In SIGMETRICS, 2018.

37



[45]
[46]

[47]

[48]

[49]

[53]

[54]

[55]

[56]

Andrew Glew. MLP yes! ILP no. ASPLOS WACI, 1998.

Maya Gokhale, Bill Holmes, and Ken Iobst. Processing in Memory: The Terasys
Massively Parallel PIM Array. Computer, 28, 1995.

Bob Goodwin, Michael Hopcroft, Dan Luu, Alex Clemmer, Mihaela Curmei, Sameh
Elnikety, and Yuxiong He. BitFunnel: Revisiting Signatures for Search. In SIGIR,
2017.

Leo J. Guibas and Robert Sedgewick. A Dichromatic Framework for Balanced Trees.
In SFCS, 1978.

Qi Guo, Nikolaos Alachiotis, Berkin Akin, Fazle Sadi, Guanglin Xu, Tze Meng Low,
Larry Pillegi, James C. Hoe, and Franz Frachetti. 3D-Stacked Memory-Side Accelera-
tion: Accelerator and System Design. In WoNDP, 2013.

R. W. Hamming. Error Detecting and Error Correcting Codes. BST.J, 1950.

Jong-Wook Han, Choon-Sik Park, Dae-Hyun Ryu, and Eun-Soo Kim. Optical image
encryption based on XOR operations. Optical Engineering, 38, 1999.

Milad Hashemi, Khubaib, Eiman Ebrahimi, Onur Mutlu, and Yale N. Patt. Accel-
erating Dependent Cache Misses with an Enhanced Memory Controller. In ISCA,
2016.

Milad Hashemi, Onur Mutlu, and Yale N. Patt. Continuous Runahead: Transparent
Hardware Acceleration for Memory Intensive Workloads. In MICRO, 2016.

Hasan Hassan, Minesh Patel, Jeremie Kim, A. Giray Yaglik¢i, Nandita Vijaykumar,
Nika Mansouri Ghiasi, Saugata Ghose, and Onur Mutlu. CROW: A Low-Overhead
Substrate for Improving DRAM Performance and Energy-Efficiency. In ISCA, 2019.

Hasan Hassan, Gennady Pekhimenko, Nandita Vijaykumar, Vivek Seshadri, Donghyuk
Lee, Oguz Ergin, and Onur Mutlu. ChargeCache: Reducing DRAM Latency by Ex-
ploiting Row Access Locality. In HPCA, 2016.

Hasan Hassan, Nandita Vijaykumar, Samira Khan, Saugata Ghose, Kevin Chang,
Gennady Pekhimenko, Donghyuk Lee, Oguz Ergin, and Onur Mutlu. SoftMC: A
Flexible and Practical Open-source Infrastructure for Enabling Experimental DRAM
Studies. In HPCA, 2017.

Syed Minhaj Hassan, Sudhakar Yalamanchili, and Saibal Mukhopadhyay. Near Data
Processing: Impact and Optimization of 3D Memory System Architecture on the Un-
core. In MEMSYS, 2015.

Kevin Hsieh, Eiman Ebrahimi, Gwangsun Kim, Niladrish Chatterjee, Mike O’Conner,
Nandita Vijaykumar, Onur Mutlu, and Stephen W. Keckler. Transparent Offloading

and Mapping (TOM): Enabling Programmer-Transparent Near-Data Processing in
GPU Systems. In ISCA, 2016.

38



[59]

[60]

[61]

[62]

[63]

[64]

[65]
[66]

[71]

[72]

Kevin Hsieh, Samira Khan, Nandita Vijaykumar, Kevin K Chang, Amirali Boroumand,
Saugata Ghose, and Onur Mutlu. Accelerating Pointer Chasing in 3D-stacked Memory:
Challenges, Mechanisms, Evaluation. In ICCD, 2016.

Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and Yoshua Bengio.
Binarized Neural Networks. In NIPS, 2016.

Intel. Intel Instruction Set Architecture Extensions. https://software.intel.com/
en-us/intel-isa-extensions.

Engin Ipek, Onur Mutlu, José F. Martinez, and Rich Caruana. Self-Optimizing Mem-
ory Controllers: A Reinforcement Learning Approach. In ISCA, ISCA 08, 2008.

J. Jeddeloh and B. Keeth. Hybrid Memory Cube: New DRAM architecture increases
density and performance. In VLSIT, 2012.

JEDEC. DDR3 SDRAM Standard, JESD79-3D. http://www.jedec.org/sites/
default/files/docs/JESD79-3D.pdf, 20009.

JEDEC. DDR3 SDRAM, JESD79-3F, 2012.

JEDEC. DDR4 SDRAM Standard. http://www. jedec.org/standards-documents/
docs/jesd79-4a, 2013.

H.B. Kang and S.K. Hong. One-Transistor Type DRAM. US Patent 7701751, 2009.

Uksong Kang, Hak-soo Yu, Churoo Park, Hongzhong Zheng, John Halbert, Kuljit
Bains, S Jang, and Joo Sun Choi. Co-architecting Controllers and DRAM to Enhance
DRAM Process Scaling. In The Memory Forum, 2014.

Brent Keeth, R. Jacob Baker, Brian Johnson, and Feng Lin. DRAM Chrcuit Design:
Fundamental and High-Speed Topics. Wiley-IEEE Press, 2nd edition, 2007.

S. Khan, C. Wilkerson, D. Lee, A. R. Alameldeen, and O. Mutlu. A Case for Memory
Content-Based Detection and Mitigation of Data-Dependent Failures in DRAM. [EFEE
CAL, 2017.

Samira Khan, Donghyuk Lee, Yoongu Kim, Alaa R. Alameldeen, Chris Wilkerson,
and Onur Mutlu. The Efficacy of Error Mitigation Techniques for DRAM Retention
Failures: A Comparative Experimental Study. In SIGMETRICS, 2014.

Samira Khan, Chris Wilkerson, Zhe Wang, Alaa R. Alameldeen, Donghyuk Lee, and
Onur Mutlu. Detecting and Mitigating Data-dependent DRAM Failures by Exploiting
Current Memory Content. In MICRO, 2017.

Samira M. Khan, Donghyuk Lee, and Onur Mutlu. PARBOR: An Efficient System-
Level Technique to Detect Data-Dependent Failures in DRAM. In DSN, 2016.

Jeremie Kim, Minesh Patel, Hasan Hassan, and Onur Mutlu. Solar-DRAM: Reducing
DRAM Access Latency by Exploiting the Variation in Local Bitlines. In ICCD, 2018.

39


https://software.intel.com/en-us/intel-isa-extensions
https://software.intel.com/en-us/intel-isa-extensions
http://www.jedec.org/sites/default/files/docs/JESD79-3D.pdf
http://www.jedec.org/sites/default/files/docs/JESD79-3D.pdf
http://www.jedec.org/standards-documents/docs/jesd79-4a
http://www.jedec.org/standards-documents/docs/jesd79-4a

[75]

[76]

[77]

Jeremie Kim, Minesh Patel, Hasan Hassan, and Onur Mutlu. The DRAM Latency
PUF: Quickly Evaluating Physical Unclonable Functions by Exploiting the Latency-
Reliability Tradeoff in Modern Commodity DRAM Devices. In HPCA, 2018.

Jeremie Kim, Minesh Patel, Hasan Hassan, Lois Orosa, and Onur Mutlu. D-RaNGe:
Using Commodity DRAM Devices to Generate True Random Numbers with Low La-
tency and High Throughput. In HPCA, 2019.

Jeremie S Kim, Damla Senol Cali, Hongyi Xin, Donghyuk Lee, Saugata Ghose, Mo-
hammed Alser, Hasan Hassan, Oguz Ergin, Can Alkan, and Onur Mutlu. GRIM-
Filter: Fast seed location filtering in DNA read mapping using processing-in-memory
technologies. BMC' genomics, 19, 2018.

Jeremie S. Kim, Minesh Patel, Hasan Hassan, and Onur Mutlu. The DRAM Latency
PUF: Quickly Evaluating Physical Unclonable Functions by Exploiting the Latency-
Reliability Tradeoff in Modern Commodity DRAM Devices. In HPCA, 2018.

Yoongu Kim. Architectural Techniques to Enhance DRAM Scaling. PhD thesis,
Carnegie Mellon University, 2015.

Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin, Ji Hye Lee, Donghyuk Lee, Chris
Wilkerson, Konrad Lai, and Onur Mutlu. Flipping Bits in Memory Without Accessing
Them: An Experimental Study of DRAM Disturbance Errors. In ISCA, 2014.

Yoongu Kim, Michael Papamichael, Onur Mutlu, and Mor Harchol-Balter. Thread
Cluster Memory Scheduling: Exploiting Differences in Memory Access Behavior. In
MICRO, 2010.

Yoongu Kim, Vivek Seshadri, Donghyuk Lee, Jamie Liu, and Onur Mutlu. A Case for
Exploiting Subarray-level Parallelism (SALP) in DRAM. In ISCA, 2012.

Yoongu Kim, Weikun Yang, and Onur Mutlu. Ramulator: A Fast and Extensible
DRAM Simulator. IEEE CAL, 2016.

D. E. Knuth. The Art of Computer Programming. Fascicle 1: Bitwise Tricks & Tech-
niques; Binary Decision Diagrams, 2009.

Peter M. Kogge. EXECUBE: A New Architecture for Scaleable MPPs. In ICPP, 1994.

C. J. Lee, V. Narasiman, O. Mutlu, and Y. N. Patt. Improving Memory Bank-Level
Parallelism in the Presence of Prefetching. In MICRO, 2009.

Donghyuk Lee. Reducing DRAM Latency at Low Cost by Ezploiting Heterogeneity.
PhD thesis, Carnegie Mellon University, 2016.

Donghyuk Lee, Saugata Ghose, Gennady Pekhimenko, Samira Khan, and Onur Mutlu.
Simultaneous Multi-Layer Access: Improving 3D-Stacked Memory Bandwidth at Low
Cost. ACM TACO, 12, 2016.

40



[39]

[90]

[100]

[101]

[102]

Donghyuk Lee, Farhad Hormozdiari, Hongyi Xin, Faraz Hach, Onur Mutlu, and Can
Alkan. Fast and Accurate Mapping of Complete Genomics Reads. Methods, 2015.

Donghyuk Lee, Samira Khan, Lavanya Subramanian, Saugata Ghose, Rachata
Ausavarungnirun, Gennady Pekhimenko, Vivek Seshadri, and Onur Mutlu. Design-
Induced Latency Variation in Modern DRAM Chips: Characterization, Analysis, and
Latency Reduction Mechanisms. In SIGMETRICS, 2017.

Donghyuk Lee, Yoongu Kim, Gennady Pekhimenko, Samira Manabi Khan, Vivek Se-
shadri, Kevin Kai-Wei Chang, and Onur Mutlu. Adaptive-latency DRAM: Optimizing
DRAM timing for the common-case. In HPCA, 2015.

Donghyuk Lee, Yoongu Kim, Vivek Seshadri, Jamie Liu, Lavanya Subramanian, and
Onur Mutlu. Tiered-latency DRAM: A Low Latency and Low Cost DRAM Architec-
ture. In HPCA, 2013.

Donghyuk Lee, Lavanya Subramanian, Rachata Ausavarungnirun, Jongmoo Choi, and
Onur Mutlu. Decoupled Direct Memory Access: Isolating CPU and 10 Traffic by
Leveraging a Dual-Data-Port DRAM. In PACT, 2015.

Heng Li and Richard Durbin. Fast and accurate long-read alignment with Burrows—
Wheeler transform. Bioinformatics, 26, 2010.

Shuangchen Li, Dimin Niu, Krishna T. Malladi, Hongzhong Zheng, Bob Brennan, and
Yuan Xie. DRISA: A DRAM-based Reconfigurable In-Situ Accelerator. In MICRO,
2017.

Shuangchen Li, Cong Xu, Qiaosha Zou, Jishen Zhao, Yu Lu, and Yuan Xie. Pinatubo:
A Processing-in-Memory Architecture for Bulk Bitwise Operations in Emerging Non-
Volatile Memories. In DAC, 2016.

Yinan Li and Jignesh M. Patel. BitWeaving: Fast Scans for Main Memory Data
Processing. In SIGMOD, 2013.

Yinan Li and Jignesh M. Patel. WideTable: An Accelerator for Analytical Data
Processing. Proc. VLDB Endow., 2014.

Erik Lindholm, John Nickolls, Stuart Oberman, and John Montrym. NVIDIA Tesla:
A Unified Graphics and Computing Architecture. IEEE Micro, 2008.

Jamie Liu, Ben Jaiyen, Yoongu Kim, Chris Wilkerson, and Onur Mutlu. An Exper-
imental Study of Data Retention Behavior in Modern DRAM Devices: Implications
for Retention Time Profiling Mechanisms. In ISCA, 2013.

Jamie Liu, Ben Jaiyen, Richard Veras, and Onur Mutlu. RAIDR: Retention-Aware
Intelligent DRAM Refresh. In ISCA, 2012.

Zhiyu Liu, Irina Calciu, Maurice Herlihy, and Onur Mutlu. Concurrent Data Structures
for Near-Memory Computing. In SPAA, 2017.

41



103]

[104]

[105]

[106]

107]

[108]

[109]

110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

Shih-Lien Lu, Ying-Chen Lin, and Chia-Lin Yang. Improving DRAM Latency with
Dynamic Asymmetric Subarray. In MICRO, 2015.

Yixin Luo, Sriram Govindan, Bikash Sharma, Mark Santaniello, Justin Meza, Aman
Kansal, Jie Liu, Badriddine Khessib, Kushagra Vaid, and Onur Mutlu. Charac-
terizing Application Memory Error Vulnerability to Optimize Datacenter Cost via
Heterogeneous-Reliability Memory. In DSN, 2014.

R. E. Lyons and W. Vanderkulk. The Use of Triple-Modular Redundancy to Improve
Computer Reliability. IBM JRD, 1962.

S. A. Manavski. CUDA Compatible GPU as an Efficient Hardware Accelerator for
AES Cryptography. In ICSPC, 2007.

Sparsh Mittal. A Survey of Techniques for Approximate Computing. ACM Comput.
Surv., 48, 2016.

Amir Morad, Leonid Yavits, and Ran Ginosar. GP-SIMD Processing-in-Memory. ACM
Trans. Archit. Code Optim., 11, 2015.

Onur Mutlu and Thomas Moscibroda. Parallelism-Aware Batch Scheduling: Enhanc-
ing Both Performance and Fairness of Shared DRAM Systems. In ISCA, 2008.

Onur Mutlu, Jared Stark, Chris Wilkerson, and Yale N. Patt. Runahead Execution:
An Alternative to Very Large Instruction Windows for Out-of-Order Processors. In
HPCA, 2003.

Gene Myers. A Fast Bit-vector Algorithm for Approximate String Matching Based on
Dynamic Programming. JACM, 1999.

L. Nai, R. Hadidi, J. Sim, H. Kim, P. Kumar, and H. Kim. GraphPIM: Enabling
Instruction-Level PIM Offloading in Graph Computing Frameworks. In HPCA, 2017.

Elizabeth O’Neil, Patrick O’Neil, and Kesheng Wu. Bitmap Index Design Choices and
Their Performance Implications. In IDEAS, 2007.

Oracle. Using Bitmap Indexes in Data Warehouses. https://docs.oracle.com/cd/
B28359_01/server.111/b28313/indexe\s.htm.

Mark Oskin, Frederic T. Chong, and Timothy Sherwood. Active Pages: A Computa-
tion Model for Intelligent Memory. In ISCA, 1998.

Minesh Patel, Jeremie S. Kim, Hasan Hassan, and Onur Mutlu. Understanding and
Modeling On-Die Error Correction in Modern DRAM: An Experimental Study Using
Real Devices. In DSN, 2019.

Minesh Patel, Jeremie S Kim, and Onur Mutlu. The Reach Profiler (REAPER):
Enabling the Mitigation of DRAM Retention Failures via Profiling at Aggressive Con-
ditions. In ISCA, 2017.

42


https://docs.oracle.com/cd/B28359_01/server.111/b28313/indexe\ s.htm
https://docs.oracle.com/cd/B28359_01/server.111/b28313/indexe\ s.htm

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

128]

129]

[130]

[131]

[132)

David Patterson, Thomas Anderson, Neal Cardwell, Richard Fromm, Kimberly Kee-
ton, Christoforos Kozyrakis, Randi Thomas, and Katherine Yelick. A Case for Intelli-
gent RAM. IEEFE Micro, 17, 1997.

Ashutosh Pattnaik, Xulong Tang, Adwait Jog, Onur Kayiran, Asit K Mishra, Mah-
mut T Kandemir, Onur Mutlu, and Chita R Das. SchEduling Techniques for GPU
Architectures with Processing-in-memory Capabilities. In PACT, 2016.

Alex Peleg and Uri Weiser. MMX Technology Extension to the Intel Architecture.
IEEE Micro, 1996.

M. K. Qureshi, D. H. Kim, S. Khan, P. J. Nair, and O. Mutlu. AVATAR: A Variable-
Retention-Time (VRT) Aware Refresh for DRAM Systems. In DSN, 2015.

Rambus. DRAM power model, 2010.

Kim R Rasmussen, Jens Stoye, and Eugene W Myers. Efficient g-gram filters for
finding all e-matches over a given length. Journal of Computational Biology, 13(2),
2006.

Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali Farhadi. XNOR-
Net: ImageNet Classification Using Binary Convolutional Neural Networks. In ECC'V,
2016.

P. J. Restle, J. W. Park, and B. F. Lloyd. DRAM Variable Retention Time. In IEDM,
1992.

Ronald L Rivest, Len Adleman, and Michael L Dertouzos. On Data Banks and Privacy
Homomorphisms. FSC, 1978.

Scott Rixner, William J. Dally, Ujval J. Kapasi, Peter Mattson, and John D. Owens.
Memory access scheduling. In ISCA, 2000.

Stephen M Rumble, Phil Lacroute, Adrian V Dalca, Marc Fiume, Arend Sidow, and
Michael Brudno. SHRiMP: Accurate mapping of short color-space reads. 2009.

Damla Senol Cali, Jeremie S Kim, Saugata Ghose, Can Alkan, and Onur Mutlu.
Nanopore Sequencing Technology and Tools for Genome Assembly: Computational
Analysis of the Current State, Bottlenecks and Future Directions. Briefings in Bioin-
formatics, 2018.

Vivek Seshadri. Simple DRAM and Virtual Memory Abstractions to Enable Highly
Efficient Memory Subsystems. PhD thesis, Carnegie Mellon University, 2016.

Vivek Seshadri, Abhishek Bhowmick, Onur Mutlu, Phillip B. Gibbons, Michael A.
Kozuch, and Todd C. Mowry. The Dirty-Block Index. In ISCA, 2014.

Vivek Seshadri, Kevin Hsieh, Amirali Boroumand, Donghyuk Lee, Michael A. Kozuch,
Onur Mutlu, Phillip B. Gibbons, and Todd C. Mowry. Fast Bulk Bitwise AND and
OR in DRAM. IEEE CAL, 2015.

43



[133]

[134]

[135]

[136]

[137]

[138)]
[139]
[140]

[141]

[142)

[143]

[144]

[145]

Vivek Seshadri, Yoongu Kim, Chris Fallin, Donghyuk Lee, Rachata Ausavarungnirun,
Gennady Pekhimenko, Yixin Luo, Onur Mutlu, Phillip B. Gibbons, Michael A. Kozuch,
and Todd C. Mowry. RowClone: Fast and Energy-efficient in-DRAM Bulk Data Copy
and Initialization. In MICRO, 2013.

Vivek Seshadri, Donghyuk Lee, Thomas Mullins, Hasan Hassan, Amirali Boroumand,
Jeremie Kim, Michael A. Kozuch, Onur Mutlu, Phillip B. Gibbons, and Todd C.
Mowry. Ambit: In-Memory Accelerator for Bulk Bitwise Operations Using Commodity
DRAM Technology. In MICRO, 2017.

Vivek Seshadri, Thomas Mullins, Amirali Boroumand, Onur Mutlu, Phillip B. Gib-
bons, Michael A. Kozuch, and Todd C. Mowry. Gather-scatter DRAM: In-DRAM
Address Translation to Improve the Spatial Locality of Non-unit Strided Accesses. In
MICRO, 2015.

Vivek Seshadri and Onur Mutlu. Simple Operations in Memory to Reduce Data Move-
ment. In Advances in Computers, volume 106. Elsevier, 2017.

David Elliot Shaw, Salvatore Stolfo, Hussein Ibrahim, Bruce K. Hillyer, Jim Andrews,
and Gio Wiederhold. The NON-VON Database Machine: An Overview. http://hdl.
handle.net/10022/AC:P:11530., 1981.

Roman Sikorski. Boolean Algebras, volume 2. Springer, 1969.
Harold S. Stone. A Logic-in-Memory Computer. I[EEE Trans. Comput., 19, 1970.

Arun Subramaniyan and Reetuparna Das. Parallel Automata Processor. In ISCA,
2017.

Zehra Sura, Arpith Jacob, Tong Chen, Bryan Rosenburg, Olivier Sallenave, Carlo
Bertolli, Samuel Antao, Jose Brunheroto, Yoonho Park, Kevin O’Brien, and Ravi
Nair. Data access optimization in a processing-in-memory system. In CF, 2015.

Bradley Thwaites, Gennady Pekhimenko, Hadi Esmaeilzadeh, Amir Yazdanbakhsh,
Onur Mutlu, Jongse Park, Girish Mururu, and Todd Mowry. Rollback-free Value
Prediction with Approximate Loads. In PACT, 2014.

P. Tuyls, H. D. L. Hollmann, J. H. Van Lint, and L. Tolhuizen. XOR-based Visual
Cryptography Schemes. Designs, Codes and Cryptography, 37, 2005.

Aniruddha N. Udipi, Naveen Muralimanohar, Niladrish Chatterjee, Rajeev Balasubra-
monian, Al Davis, and Norman P. Jouppi. Rethinking DRAM Design and Organization
for Energy-constrained Multi-cores. In ISCA, 2010.

Yaohua Wang, Arash Tavakkol, Lois Orosa, Saugata Ghose, Nika Mansouri Ghiasi,
Minesh Patel, Jeremie Kim, Hasan Hassan, Mohammad Sadrosadati, and Onur Mutlu.
Reducing DRAM Latency via Charge-Level-Aware Look-Ahead Partial Restoration.
In MICRO, 2018.

44


http://hdl.handle.net/10022/AC:P:11530.
http://hdl.handle.net/10022/AC:P:11530.

[146]
[147]

[148]

[149]

[150]

[151]

[152]

[153]

[154]

[155]

[156]

[157]

[158]

Henry S. Warren. Hacker’s Delight. Addison-Wesley Professional, 2nd edition, 2012.

David Weese, Anne-Katrin Emde, Tobias Rausch, Andreas Déring, and Knut Reinert.
Razers - fast read mapping with sensitivity control. Genome research, 19, 2009.

Thomas Willhalm, Ismail Oukid, Ingo Muller, and Franz Faerber. Vectorizing Database
Column Scans with Complex Predicates. In ADMS, 2013.

Kesheng Wu, Ekow J. Otoo, and Arie Shoshani. Compressing Bitmap Indexes for
Faster Search Operations. In SSDBM, 2002.

Hongyi Xin, John Greth, John Emmons, Gennady Pekhimenko, Carl Kingsford, Can
Alkan, and Onur Mutlu. Shifted Hamming Distance: A Fast and Accurate SIMD-
friendly Filter to Accelerate Alignment Verification in Read Mapping. Bioinformatics,
2015.

Hongyi Xin, Donghyuk Lee, Farhad Hormozdiari, Samihan Yedkar, Onur Mutlu, and
Can Alkan. Accelerating read mapping with FastHASH. BMC' genomics, 14:513, 2013.

D. S. Yaney, C. Y. Lu, R. A. Kohler, M. J. Kelly, and J. T. Nelson. A Meta-stable
Leakage Phenomenon in DRAM Charge Storage - Variable Hold Time. In IEDM, 1987.

Amir Yazdanbakhsh, Gennady Pekhimenko, Bradley Thwaites, Hadi Esmaeilzadeh,
Onur Mutlu, and Todd C. Mowry. RFVP: Rollback-Free Value Prediction with Safe-
to-Approximate Loads. ACM TACO, 2016.

Dongping Zhang, Nuwan Jayasena, Alexander Lyashevsky, Joseph L. Greathouse, Li-
fan Xu, and Michael Ignatowski. TOP-PIM: Throughput-oriented Programmable Pro-
cessing in Memory. In HPDC, 2014.

Tao Zhang, Ke Chen, Cong Xu, Guangyu Sun, Tao Wang, and Yuan Xie. Half-DRAM:
A High-bandwidth and Low-power DRAM Architecture from the Rethinking of Fine-
grained Activation. In ISCA, 2014.

Wei Zhao and Yu Cao. New Generation of Predictive Technology Model for Sub-45
nm Early Design Exploration. IEEE TED, 2006.

Q. Zhu, T. Graf, H. E. Sumbul, L. Pileggi, and F. Franchetti. Accelerating sparse
matrix-matrix multiplication with 3D-stacked logic-in-memory hardware. In HPEC,
2013.

W. K. Zuravleff and T. Robinson. Controller for a synchronous DRAM that maximizes
throughput by allowing memory requests and commands to be issued out of order.
Patent 5630096, 1997.

45



	1 Introduction
	2 Background on DRAM
	2.1 High-level Organization of the Memory System
	2.2 DRAM Chip
	2.2.1 DRAM Cell and Sense Amplifier
	2.2.2 DRAM Cell Operation: The ACTIVATE-PRECHARGE cycle
	2.2.3 DRAM MAT/Tile: The Open Bitline Architecture
	2.2.4 DRAM Bank
	2.2.5 DRAM Commands: Accessing Data from a DRAM Chip
	2.2.6 DRAM Timing Constraints

	2.3 DRAM Module
	2.4 RowClone: Bulk Copy and Initialization using DRAM

	3 Ambit: A Bulk Bitwise Execution Engine
	3.1 Ambit-AND-OR
	3.1.1 Triple-Row Activation (TRA)
	3.1.2 Making TRA Work
	3.1.3 Implementation of Ambit-AND-OR
	3.1.4 Fast Row Copy and Initialization Using RowClone

	3.2 Ambit-NOT

	4 Ambit: Full Design and Implementation
	4.1 Row Address Grouping
	4.2 Executing Bitwise Ops: The AAP Primitive
	4.3 Accelerating AAP with a Split Row Decoder

	5 Integrating Ambit with the System
	5.1 ISA Support
	5.2 Ambit API/Driver Support
	5.3 Implementing the bbop Instructions 
	5.4 Maintaining On-chip Cache Coherence 
	5.5 Error Correction and Data Scrambling
	5.6 Ambit Hardware Cost
	5.6.1 Ambit Chip Cost
	5.6.2 Ambit Controller Cost
	5.6.3 Ambit Testing Cost


	6 Circuit-level SPICE Simulations
	7 Analysis of Ambit's Throughput & Energy
	8 Effect on Real-World Applications
	8.1 Bitmap Indices
	8.2 BitWeaving: Fast Scans using Bitwise Operations
	8.3 Bitvectors vs. Red-Black Trees
	8.4 Other Applications
	8.4.1 BitFunnel: Web Search
	8.4.2 Masked Initialization
	8.4.3 Encryption
	8.4.4 DNA Sequence Mapping
	8.4.5 Machine Learning


	9 Future Work
	9.1 Extending Ambit to Other Operations
	9.2 Evaluation of New Applications with Ambit
	9.3 Redesigning Applications to Exploit Ambit
	9.4 Taking Advantage of Approximate Ambit

	10 Conclusion

